首页 > 代码库 > 【Leetcode】Search in Rotated Sorted Array

【Leetcode】Search in Rotated Sorted Array

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

 

排序的数组查找可以采用二分查找的方法~,有序数组被转动后依然可以采用二分的思想,但是要考虑到start,end与mid的大小决定递归调用二分还是自身。

因为分治后的数组一半严格有序,一半有序的转动数组。

 

1st (7 tries)

class Solution {public:    int search(int A[], int n, int target)     {        // Note: The Solution object is instantiated only once and is reused by each test case.        if(A[0]<A[n-1])            return orderfind(A,0,n-1,target);        else            return find(A,0,n-1,target);    }    int find(int A[],int start,int end,int target)    {        if(start > end||end < start)        {            return -1;        }        int mid = (start + end)/2;        if(target == A[mid])        {            return mid;        }        else if(target > A[mid])        {            if(A[mid] > A[start])                return find(A,mid+1,end,target);            else if(A[mid] == A[start])                return find(A,mid+1,end,target);            else            {                if(target == A[start])                    return start;                else if(target > A[start])                    return find(A,start,mid-1,target);                else                    return orderfind(A,mid+1,end,target);            }        }        else        {            if(A[mid] < A[start])                return find(A,start,mid-1,target);            else if(A[mid] == A[start])                return find(A,mid+1,end,target);            else            {                if(target == A[start])                    return start;                else if(target > A[start])                    return orderfind(A,start,mid-1,target);                else                    return find(A,mid+1,end,target);            }        }    }    int orderfind(int A[],int start,int end,int target)    {        if(start > end||end < start)        {            return -1;        }        int mid = (start + end)/2;        if(target == A[mid])        {            return mid;        }        else if(target > A[mid])        {            return orderfind(A,mid+1,end,target);        }        else        {            return orderfind(A,start,mid-1,target);        }    }};

  

2nd (2 tries)

class Solution {public:    int search(int A[], int n, int target) {        return search(A,0,n-1,target);    }    int search(int A[], int start, int end, int target) {        if(start > end)            return -1;        int mid = start + (end - start)/2;        //rotate n        if(A[start] <= A[end])            return bsearch(A,start,end,target);        if(A[mid] == target)            return mid;        else if(A[mid] > target) {            if(A[mid] >= A[start]) {                if(A[start] > target)                    return search(A,mid+1,end,target);                else                     return bsearch(A,start,mid-1,target);            }            else {                return search(A,start,mid-1,target);            }        }        else {            if(A[mid] >= A[start]) {                return search(A,mid+1,end,target);            }            else {                if(target > A[end]) {                    return search(A,start,mid-1,target);                }                else {                    return bsearch(A,mid+1,end,target);                }            }        }    }     int bsearch(int A[], int start, int end,int target) {        while(start <= end) {            int mid = start + (end - start)/2;            if(A[mid] == target)                return mid;            else if(A[mid] > target)                 end = mid-1;            else                start = mid+1;        }        return -1;    }};