首页 > 代码库 > hadoop中文分词、词频统计及排序
hadoop中文分词、词频统计及排序
需求如下:
有如图所示的输入文件。其中第一列代表ip地址,之后的偶数列代表搜索词,数字(奇数列)代表搜索次数,使用"\t"分隔。现在需要对搜索词进行分词并统计词频,此处不考虑搜索次数,可能是翻页,亦不考虑搜索链接的行为。
这里中文分词使用了IK分词包,直接将源码放入src中。感谢IK分词。
程序如下:
<span style="font-size:14px;">package seg; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.Reader; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import org.wltea.analyzer.core.IKSegmenter; import org.wltea.analyzer.core.Lexeme; /** * @author zhf * @version 创建时间:2014年8月16日 下午3:04:40 */ public class SegmentTool extends Configured implements Tool{ public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new SegmentTool(), args); System.exit(exitCode); } @Override public int run(String[] arg0) throws Exception { Configuration conf = new Configuration(); String[] args = new GenericOptionsParser(conf,arg0).getRemainingArgs(); if(args.length != 2){ System.err.println("Usage:seg.SegmentTool <input> <output>"); System.exit(2); } Job job = new Job(conf,"nseg.jar"); FileSystem fs = FileSystem.get(conf); if(fs.exists(new Path(args[1]))) fs.delete(new Path(args[1]),true); job.setJarByClass(SegmentTool.class); job.setMapperClass(SegmentMapper.class); job.setCombinerClass(SegReducer.class); job.setReducerClass(SegReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); return job.waitForCompletion(true) ? 0 : 1; } public static class SegmentMapper extends Mapper<LongWritable,Text,Text,IntWritable>{ private IKSegmenter iks = new IKSegmenter(true); private Text word = new Text(); private final static IntWritable one = new IntWritable(1); public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{ String line = value.toString().trim(); String[] str = line.split("\t"); for(int i=1;i<str.length;i+=2){ String tmp = str[i]; if(tmp.startsWith("http")) continue; List<String> list = segment(tmp); for(String s : list){ word.set(s); context.write(word, one); } } } private List<String> segment(String str) throws IOException{ byte[] byt = str.getBytes(); InputStream is = new ByteArrayInputStream(byt); Reader reader = new InputStreamReader(is); iks.reset(reader); Lexeme lexeme; List<String> list = new ArrayList<String>(); while((lexeme = iks.next()) != null){ String text = lexeme.getLexemeText(); list.add(text); } return list; } } public static class SegReducer extends Reducer<Text,IntWritable,Text,IntWritable>{ private IntWritable result = new IntWritable(); public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException, InterruptedException{ int sum = 0; for(IntWritable val : values) sum += val.get(); result.set(sum); context.write(key, result); } } }</span>
使用的hadoop环境为:Hadoop 2.3.0-cdh5.0.0。需要引入三个hadoop相关的jar : hadoop-mapreduce-client-core-2.0.0-cdh4.6.0.jar、hadoop-common-2.0.0-cdh4.6.0.jar、commons-cli-1.2.jar。
打包后,执行命令:yarn jar seg.jar seg.SegmentTool /test/user/zhf/input /test/user/zhf/output
输出结果如下:
<span style="font-size:18px;">阿迪达斯 1 附近 2 陈 22 陈乔恩 1 陈奕迅 1 陈毅 2 限额 4 陕西 4 除个别 1 隐私 1 隔壁 1 集成 4 集锦 1 雨中 2 雪 5 露 1 青 7 青岛 2</span>
但是并没有排序,如果数据量比较小,可以采用linux命令:sort -k2 -n -r kw_result.txt > kw_freq.txt进行排序。
数据量大的话,可以将结果导入Hive,因为只有两列了,hive -e "select key,count from kw_table sort by count desc;" > kw_freq.txt 即可得到有序的结果。
亦可以将之前的ouput作为下一个job的input,实现排序。需要反转map输出的key和value。
代码如下:
<span style="font-size:14px;">package seg; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * @author zhf * @email zhf.thu@gmail.com * @version 创建时间:2014年8月16日 下午4:51:00 */ public class SortByFrequency extends Configured implements Tool{ public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new SortByFrequency(), args); System.exit(exitCode); } @Override public int run(String[] arg0) throws Exception { Configuration conf = new Configuration(); String[] args = new GenericOptionsParser(conf,arg0).getRemainingArgs(); if(args.length != 2){ System.err.println("Usage:seg.SortByFrequency <input> <output>"); System.exit(2); } Job job = new Job(conf,"nseg.jar"); FileSystem fs = FileSystem.get(conf); if(fs.exists(new Path(args[1]))) fs.delete(new Path(args[1]),true); job.setJarByClass(SortByFrequency.class); job.setMapperClass(SortMapper.class); job.setReducerClass(SortReducer.class); job.setSortComparatorClass(DescComparator.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); return job.waitForCompletion(true) ? 0 : 1; } public static class SortMapper extends Mapper<LongWritable,Text,IntWritable,Text>{ public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{ String str[] = value.toString().split("\t"); context.write(new IntWritable(Integer.valueOf(str[1])), new Text(str[0])); } } public static class SortReducer extends Reducer<IntWritable,Text,Text,IntWritable>{ private Text result = new Text(); public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{ for(Text val : values){ result.set(val); context.write(result, key); } } } public static class DescComparator extends WritableComparator{ protected DescComparator() { super(IntWritable.class,true); } @Override public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3, int arg4, int arg5) { return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5); } @Override public int compare(Object a,Object b){ return -super.compare(a, b); } } }</span>
head查看的结果如下:
的 175 上海 158 上 85 都市 76 在 71 ppt 64 运输 58 电视 58 式 58 2 52
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。