首页 > 代码库 > Hackerrank--Prime Sum

Hackerrank--Prime Sum

题目链接

The problem is quite simple. You‘re given a number N and a positive integer K. Tell if N can be represented as a sum of K prime numbers (not necessarily distinct).

Input Format
The first line contains a single integer T, denoting the number of test cases. 
Each of the next T lines contains two positive integers, N & K, separated by a single space.

Output Format
For every test case, output "Yes" or "No" (without quotes).

Constraints
1 <= T <= 5000 
1 <= N <= 1012 
1 <= K <= 1012

Sample Input

210 21 6

Sample Output

YesNo

Explanation

In the first case, 10 can be written as 5 + 5, and 5 is a prime number. In the second case, 1 cannot be represented as a sum of prime numbers, because there are no prime numbers less than 1.

题意:给两个正整数n和k,问能否将n分解为k个素数的和(可以出现相同的)。

思路:本题涉及的知识点有哥德巴赫猜想(任何大于2的偶数都可以拆分成两个素数的和),

还有Miller-Rabin素数测试,一般使用的素数测试是O(sqrt(n))复杂度的,无法满足大整数的要求。

 

费马小定理如果p是一个素数,(0<a<p),

 

 

 

例如,67是一个素数,2^66 mod 67=1.

 

利用费马小定理,对于给定的整数n,可以设计一个素数判定算法.通过计算d=2^(n-1) mod n 来判定整数n的素性.d1,n肯定不是素数;d=1,n则很可能是素数,但也存在合数n,使得 .例如,满足此条件的最小合数是n=341.为了提高测试的准确性,我们可以随机地选取整数1<a<n-1,然后用条件 来判定整数n的素性.例如对于n=341,a=3, ,故可判定n不是素数.

 

       费马小定理毕竟只是素数判定的一个必要条件.满足费马小定理条件的整数n未必全是素数.有些合数也满足费马小定理的条件.这些合数被称作Carmichael,3Carmichael数是561,1105,1729. Carmichael数是非常少的.1~100000000范围内的整数中,只有255Carmichael.

 

       利用下面的二次探测定理可以对上面的素数判定算法作进一步改进,以避免将Carmichael数当作素数.

 

二次探测定理  如果p是一个素数,且0<x<p,则方程x*x1(mod p)的解为x=1,p-1.

 

       事实上, x*x1(mod p)等价于 x*x-10(mod p).由此可知;

 

        (x-1)(x+1) 1(mod p)

 

p必须整除x-1或x+1.由p是素数且 0<x<p,推出x=1或x=p-1.

 

       利用二次探测定理,我们可以在利用费马小定理计算 a^(n-1) mod n的过程中增加对于整数n的二次探测.一旦发现违背二次探测条件,即可得出n不是素数的结论.

 

 

Accepted Code:

 1 #include <ctime> 2 #include <iostream> 3 using namespace std; 4  5 typedef long long LL; 6  7 LL mulMod(LL a, LL b, LL c) { 8     LL res = 0; 9     while (b) {10         if (b&1) if ((res = (res + a)) >= c) res -= c;11         a = a + a;12         if (a >= c) a -= c;13         b >>= 1;14     }15     return res;16 }17 18 LL powMod(LL a, LL b, LL c) {19     LL res = 1;20     while (b) {21         if (b&1) res = mulMod(res, a, c);22         a = mulMod(a, a, c);23         b >>= 1;24     }25     return res;26 }27 28 bool isPrime(LL n) {29     if (n <= 1) return false;30     if (n == 2) return true;31     if (n & 1 == 0) return false;32     srand((LL)time(0));33     LL u = n - 1, k = 0, pre;34     while (!(u&1)) u >>= 1, k++;35     for (int t = 0; t < 10; t++) {36         LL a = rand() % (n - 2) + 2;37         LL ans = powMod(a, n - 1, n);38         for (int i = 0; i < k; i++) {39             pre = ans;40             ans = mulMod(ans, ans, n);41             if (ans == 1 && (pre != 1 && pre != n - 1)) return false;42             pre = ans;43         }44         if (ans != 1) return false;45     } 46     return true;47 }48 49 int main(void) {    50     ios::sync_with_stdio(false);51     int T;52     cin >> T;53     while (T--) {54         LL n, k;55         cin >> n >> k;56         if (n < 2 * k) {57             cout << "No" << endl;58         } else {59             if (k == 1) {60                 if (isPrime(n)) cout << "Yes" << endl;61                 else cout << "No" << endl;62             } else if (k == 2) {63                 if (n % 2 == 0) cout << "Yes" << endl;64                 else if (isPrime(n - 2)) cout << "Yes" << endl;65                 else cout << "No" << endl;66             } else {67                 cout << "Yes" << endl;68             }69         }70     }71     return 0;72 }

 

Hackerrank--Prime Sum