首页 > 代码库 > 图像配准的步骤
图像配准的步骤
目前,很难找到一种普适的方法能够应对所有的配准情况,任何一种配准算法都必须考虑图像的成像原理、几何变形、噪声影响、配准精度等因素。不过,从原理上将,配准算法可以大致分为以下四个步骤:
(1)特征提取
采用人工或者自动的方法检测图像中的不变特征,如:闭合区域、边缘、轮廓、角点等。特征提取算法需要满足三个条件
(a)显著性,所提取的特征应该是比较明显的,分布广泛的、易于提取的特征;
(b)抗噪性,具有较强的噪声抑制能力且对成像条件的变化不敏感;
(c)一致性,能准确地检测出两幅图像的共有特征;
(2)特征匹配
通过特征描述算作及相似性度量来建立所提取的特征之间的对应关系。特征匹配常用到的区域灰度、特征向量空间分布和特征符号描述等信息。某些算法在进行特征匹配的同时也完成了变换模型参数的估计;
(3)变换模型估计
指根据待配准图像与参考图像之间的几何畸变的情况,选择能最佳拟合两幅图像之间变化的几何变换模型,可以分为全局映射模型和局部映射模型。其中,全局映射模型利用所有控制点信息进行全局参数估计;局部映射模型利用图像局部的特征分别进行局部参数估计。常见的变换模型包括仿射变换、透视变换、多项式变换等,其中最常用的是仿射变换和多项式变换。
(4)坐标变换与插值
将输入图像做对应的参数变换,使它与参考图像处于同一个坐标系下。由于图像变换后的坐标点不一定是整数,因此,需要考虑一定的插值处理操作。常用的插值方法包括:最近邻插值、双线性插值、双三次插值、B样条插值、高斯插值;
图像配准的步骤
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。