首页 > 代码库 > const
const
字号变大的字体是哥自己加上去的-
- const的用法:
看到const 关键字,C++程序员首先想到的可能是const 常量。这可不是良好的条件反射。如果只知道用const 定义常量,那么相当于把火药仅用于制作鞭炮。const 更大的魅力是它可以修饰函数的参数、返回值,甚至函数的定义体。
const 是constant 的缩写,“恒定不变”的意思。被const 修饰的东西都受到强制保护,可以预防意外的变动,能提高程序的健壮性。所以很多C++程序设计书籍建议:“Use const whenever you need”。
- 用const 修饰函数的参数
如果参数作输出用,不论它是什么数据类型,也不论它采用“指针传递”还是“引用传递”,都不能加const 修饰,否则该参数将失去输出功能。const 只能修饰输入参数:
如果输入参数采用“指针传递”,那么加const 修饰可以防止意外地改动该指针,起到保护作用。
例如StringCopy 函数:
void StringCopy(char *strDestination, const char *strSource);
其中strSource 是输入参数,strDestination 是输出参数。给strSource 加上const修饰后,如果函数体内的语句试图改动strSource 的内容,编译器将指出错误。
如果输入参数采用“值传递”,由于函数将自动产生临时变量用于复制该参数,该输入参数本来就无需保护,所以不要加const 修饰。
例如不要将函数void Func1(int x) 写成void Func1(const int x)。
同理不要将函数void Func2(A a) 写成void Func2(const A a)。其中A 为用户自定义的数据类型。
对于非内部数据类型的参数而言,象void Func(A a) 这样声明的函数注定效率比较底。因为函数体内将产生A 类型的临时对象用于复制参数a,而临时对象的构造、复制、析构过程都将消耗时间。
为了提高效率,可以将函数声明改为void Func(A &a),因为“引用传递”仅借用一下参数的别名而已,不需要产生临时对象。但是函数void Func(A & a) 存在一个缺点:
“引用传递”有可能改变参数a,这是我们不期望的。解决这个问题很容易,加const修饰即可,因此函数最终成为void Func(const A &a)。
以此类推,是否应将void Func(int x) 改写为void Func(const int &x),以便提高效率?完全没有必要,因为内部数据类型的参数不存在构造、析构的过程,而复制也非常快,“值传递”和“引用传递”的效率几乎相当。
问题是如此的缠绵,我只好将“const &”修饰输入参数的用法总结一下。
对于非内部数据类型的输入参数,应该将“值传递”的方式改为“const 引用传递”,目的是提高效率。例如将void Func(A a) 改为void Func(const A &a)。
对于内部数据类型的输入参数,不要将“值传递”的方式改为“const 引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x) 不应该改为void Func(const int &x)。
2 .用const 修饰函数的返回值
如果给以“指针传递”方式的函数返回值加const 修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const 修饰的同类型指针。例如函数
const char * GetString(void);
如下语句将出现编译错误:
char *str = GetString();
正确的用法是
const char *str = GetString();
如果函数返回值采用“值传递方式”,由于函数会把返回值复制到外部临时的存储单元中,加const 修饰没有任何价值。
例如不要把函数int GetInt(void) 写成const int GetInt(void)。
同理不要把函数A GetA(void) 写成const A GetA(void),其中A 为用户自定义的数据类型。
如果返回值不是内部数据类型,将函数A GetA(void) 改写为const A & GetA(void)的确能提高效率。但此时千万千万要小心,一定要搞清楚函数究竟是想返回一个对象的“拷贝”还是仅返回“别名”就可以了,否则程序会出错。
函数返回值采用“引用传递”的场合并不多,这种方式一般只出现在类的赋值函数中,目的是为了实现链式表达。
例如:
class A
{
A & operate = (const A & other); // 赋值函数
} ;
A a, b, c; // a, b, c 为A 的对象
a = b = c; // 正常的链式赋值
(a = b) = c; // 不正常的链式赋值,但合法
如果将赋值函数的返回值加const 修饰,那么该返回值的内容不允许被改动。上例中,语句 a = b = c 仍然正确,但是语句 (a = b) = c 则是非法的。
3. const 成员函数
任何不会修改数据成员(即函数中的变量)的函数都应该声明为const 类型。如果在编写const 成员函数时,不慎修改了数据成员,或者调用了其它非const 成员函数,编译器将指出错误,这无疑会提高程序的健壮性。以下程序中,类stack 的成员函数GetCount 仅用于计数,从逻辑上讲GetCount 应当为const 函数。编译器将指出GetCount 函数中的错误。
class Stack
{
public:
void Push(int elem);
int Pop(void);
int GetCount(void) const; // const 成员函数
private:
int m_num;
int m_data[100];
} ;
int Stack::GetCount(void) const
{
++ m_num; // 编译错误,企图修改数据成员m_num
Pop(); // 编译错误,企图调用非const 函数
return m_num;
}
const 成员函数的声明看起来怪怪的:const 关键字只能放在函数声明的尾部,大概是因为其它地方都已经被占用了。
关于Const函数的几点规则:
a. const对象只能访问const成员函数,而非const对象可以访问任意的成员函数,包括const成员函数.(加了CONST是一种限制,因此权限受到限制)
b. const对象的成员是不可修改的,然而const对象通过指针维护的对象却是可以修改的.
c. const成员函数不可以修改对象的数据,不管对象是否具有const性质.它在编译时,以是否修改成员数据为依据,进行检查.
e. 然而加上mutable修饰符的数据成员,对于任何情况下通过任何手段都可修改,自然此时的const成员函数是可以修改它的
为什么使用const?
采用符号常量写出的代码更容易维护;指针常常是边读边移动,而不是边写边移动;许多函数参数是只读不写的。const最常见用途是作为数组的界和switch分情况标号(也可以用枚举符代替)
用法1:常量
取 代了C中的宏定义,声明时必须进行初始化。const限制了常量的使用方式,并没有描述常量应该如何分配。如果编译器知道了某const的所有使用,它甚至可以不为该const分配空间。最简单的常见情况就是常量的值在编译时已知,而且不需要分配存储。―《C++ Program Language》
用const声明的变量虽然增加了分配空间,但是可以保证类型安全。
C标准中,const定义的常量是全局的,C++中视声明位置而定。
用法2:指针和常量
使用指针时涉及到两个对象:该指针本身和被它所指的对象。将一个指针的声明用const“预先固定”将使那个对象而不是使这个指针成为常量。要将指针本身而不是被指对象声明为常量,必须使用声明运算符*const。
所以出现在 * 之前的const是作为基础类型的一部分:
char *const cp; //到char的const指针
char const *pc1; //到const char的指针
const char *pc2; //到const char的指针(后两个声明是等同的)
从右向左读的记忆方式:
cp is a const pointer to char.
pc2 is a pointer to const char.
用法3:const修饰函数传入参数
将函数传入参数声明为const,以指明使用这种参数仅仅是为了效率的原因,而不是想让调用函数能够修改对象的值。同理,将指针参数声明为const,函数将不修改由这个参数所指的对象。
通常修饰指针参数和引用参数:
void Fun( const A *in); //修饰指针型传入参数
void Fun(const A &in); //修饰引用型传入参数
用法4:修饰函数返回值
可以阻止用户修改返回值。返回值也要相应的付给一个常量或常指针。
用法5:const修饰成员函数
const对象只能访问const成员函数,而非const对象可以访问任意的成员函数,包括const成员函数;
const对象的成员是不能修改的,而通过指针维护的对象确实可以修改的;
const成员函数不可以修改对象的数据,不管对象是否具有const性质。编译时以是否修改成员数据为依据进行检查。
Const 深度解析
我们也许学习过const的使用,但是对于const的细致的技术细节却不一定掌握。const的用法在许多的教材上只是简单的介绍,在这里我们对 const进行细致的概念以及用法剖析。const 是由c++采用,并加进标准c中,但是他们的意义完全不同,在旧版本(标准前)的c中,如果想建立一个常量,必须使用预处理器:
#define PI 3.14159
此后无论在何处使用PI,都会被预处理器以3.14159替代。编译器不对PI进行类型检查,也就是说可以不受限制的建立宏并用它来替代值,如果使用不慎,很可能由预处理引入错误,这些错误往往很难发现。
我们也不能得到PI的地址(即不能向PI传递指针和引用)。
c++引入了命名常量的概念,命名常量就像变量一样,只是它的值不能改变,如果试图改变一个const 对象,编译器将会产生错误。 const 和正常变量一样有作用域,所以函数内部的const也不会影响程序的其余部分。在c++中const可以取代预处理器#define来进行值替代, const有安全的类型检查,所以不用担心会像预处理器一样引入错误。
这样指针和对象都不能改变,这两种形式同样是等同的。在赋值的的时候需要注意,我们可以将一个非const的对象地址赋给一个const指针,但是不能将一个const对象地址赋给一个非const指针,因为这样可能通过被赋值的指针改变对象的值,当然也可以用类型的强制转换来进行const对象的赋值,但是这样做打破了const提供的安全性。
const也被用于限定函数参数和函数的返回值,如果函数参数是按值传递时,即表示变量的初值不会被函数改变,如果函数的返回值为const那么对于内部类型来说按值返回的是否是一个cosnt是无关紧要的,编译器不让它成为一个左值,因为它是一个值而不是一个变量,所以使用const是多余的,例如:
const int f(){return 1;}
void main(){int a=f();}
但是当处理用户定义类型的时候,按值返回常量就很有意义了,这时候函数的返回值不能被直接赋值也不能被修改。仅仅是非const返回值能作为一个左值使用,但是这往往失去意义,因为函数返回值在使用时通常保存为一个临时量,临时量被作为左值使用并修改后,编译器将临时量清除。结果丢失了所有的修改。
可以用const限定传递或返回一个地址(即一个指针或一个引用):
const int * const func(const int *p)
{ static int a=*p;
return &a;
}
参数内的const限定指针p指向的数据不能被改变,此后p的值被赋给静态变量a,然后将a的地址返回,这里a是一个静态变量,在函数运行结束后,它的生命期并没有结束,所以可以将它的地址返回。(如果是局部变量,则不可将其值或其地址作为返回值)因为函数返回一个const int* 型,所以函数func的返回值不可以赋给一个非指向const的指针 (因为在赋值的的时候需要注意,我们可以将一个非const的对象地址赋给一个const指针,但是不能将一个const对象地址赋给一个非const指针,因为这样可能通过被赋值的指针改变对象的值),但它同时接受一个const int * const和一个const int *指针,这是因为在函数返回时产生一个const临时指针用以存放a的地址,所以自动产生了这种原始变量不能被改变的约定,于是*右边的const只有当作左值使用时才有意义。
const同样运用于类中,但是它的意义又有所不同,我们可以创建const的数据成员,const的成员函数,甚至是const的对象,但是保持类的对象为const比较复杂,所以const对象只能调用const成员函数。
const的数据成员在类的每一个对象中分配存储,并且一旦初始化这个值在对象的生命期内是一个常量,因此在类中建立一个const数据成员时,初始化工作必须在构造函数初始化列表中。如果我们希望创建一个有编译期间的常量成员,这就需要在该常量成员的前面使用static限定符,这样所有的对象都仅有一个实例或者利枚举变量:
class X
{
static const int size=50;
int a[size];
public:
X();
};
const对象只能调用const成员函数,一个普通对象同样可以调用const成员函数,因此,const成员函数更具有一般性,但是成员函数不会默认为const。声明一个const成员函数,需要将const限定符放在函数名的后面:
void f (void ) const;
当我们运用const成员函数时,遇到需要改变数据成员,可以用mutable进行特别的指定:
class X
{
mutable int i;
public:
X();
void nochange() const;
};
void X::nochange const(){i++;}
const类型定义:指明变量或对象的值是不能被更新,引入目的是为了取代预编译指令
**************常量必须被初始化*************************
cons的作用
(1)可以定义const常量 例如:
const int Max=100;
int Array[Max];
(2)便于进行类型检查 例如:
void f(const int i) { .........}
编译器就会知道i是一个常量,不允许修改;
(3)可以保护被修饰的东西,防止意外的修改,增强程序的健壮性。
还是上面的例子,如果在函数体内修改了i,编译器就会报错;
例如:
void f(const int i) { i=10;//error! }
(5) 为函数重载提供了一个参考。
class A
{
......
void f(int i) {......} file://一个函数
void f(int i) const {......} file://上一个函数的重载
......
};
(6) 可以节省空间,避免不必要的内存分配。
例如:
#define PI 3.14159 file://常量宏
const doulbe Pi=3.14159; file://此时并未将Pi放入ROM中,而是记录在常量表中。 在通常的情况下const同预处理器#define一样只是将所赋值保存入编译器的符号表中(符号表仅仅在编译时存在,在编译过程中编译器将程序中的名字与之在符号表中定义的数值作简单的替换),在使用的时候进行值替换,并不为const创建存储空间。
......
double i=Pi; file://此时为Pi分配内存,以后不再分配!
double I=PI; file://编译期间进行宏替换,分配内存
double j=Pi; file://没有内存分配
double J=PI; file://再进行宏替换,又一次分配内存!
const定义常量从汇编的角度来看,只是给出了对应的内存地址,而不是象#define一样给出的是立即数,所以,const定义的常量在程序运行过程中只有一份拷贝,而#define定义的常量在内存中有若干个拷贝。
(7) 提高了效率。
编译器通常不为普通const常量分配存储空间,而是将它们保存在符号表中,这使得它成为一个编译期间的常量,没有了存储与读内存的操作,使得它的效率也很高。
使用const
(1)修饰一般常量,常数组,常对象
修饰符const可以用在类型说明符前,也可以用在类型说明符后。 例如:
int const x=2; 或 const int x=2;
int const a[5]={1, 2, 3, 4, 5}; 或 const int a[5]={1, 2, 3, 4, 5};
class A; const A a; 或 A const a;
(2)修饰指针
const int *A; 或 int const *A; //const修饰指向的对象,A可变,A指向的对象不可变
int *const A; //const修饰指针A, A不可变,A指向的对象可变
const int *const A; //指针A和A指向的对象都不可变
(3)修饰引用
const double & v; 该引用所引用的对象不能被更新
(4)修饰函数的返回值:
const修饰符也可以修饰函数的返回值,是返回值不可被改变,格式如下:
const int Fun1();
const MyClass Fun2();
(5)修饰类的成员函数:
const修饰符也可以修饰类的成员函数,格式如下:
class ClassName
{
public:
int Fun() const;
.....
};
这样,在调用函数Fun时就不能修改类里面的数据
(6)在另一连接文件中引用const常量
extern const int i; //正确的引用
extern const int j=10; //错误!常量不可以被再次赋值
*******************放在类内部的常量有什么限制?
class A
{
private:
const int c3 = 7; // err const成员只能在定义对象的时候初始化
static int c4 = 7; // err,静态数员成员只能在外部初始化
static const float c5 = 7; // err
......
};
初始化类内部的常量
1 初始化列表:
class A
{
public:
A(int i=0):test(i) {}
private:
const int i;
};
2 外部初始化,例如:
class A
{
public:
A() {}
private:
static const int i;
};
const int A::i=3;
int main(void)
{
using namespace std;
//===========================================================
// 1.const修饰变量使其成为常量
//===========================================================
{
cout<<"----const修饰变量使其成为常量:"<<endl;
const int a = 5;
cout<<"a = "<<a<<endl;
//a = 3; //error C2166: l 值指定常数对象
//int * pa = &a; //error C2440: “初始化” : 无法从“const int *__w64 ”转换为“int *”
//int * const pa = &a; //error C2440: “初始化” : 无法从“const int *__w64 ”转换为“int *const ”
const int * pa1 = &a;
int const * pa2 = &a;
cout<<"*pa1 = "<<*pa1<<endl;
cout<<"*pa2 = "<<*pa2<<endl;
//*pa1 = 3; //error C2166: l 值指定常数对象
}
//===========================================================
// 4.const修饰函数返回值
//===========================================================
cout<<"----const修饰函数返回值:"<<endl;
//返回值为const的指针只能赋值给同类型的const指针
}
2. 必须初始化
const int i=5; //合法
const int j; //非法,导致编译错误
3. 在另一连接文件中引用const常量
extern const int i; //合法
extern const int j=10; //非法,常量不可以被再次赋值
4. 便于进行类型检查
用const方法可以使编译器对处理内容有更多了解。
#define I=10
const long &i=10; /*dapingguo提醒:由于编译器的优化,使
得在const long i=10; 时i不被分配内存,而是已10直接代入
以后的引用中,以致在以后的代码中没有错误,为达到说教效
果,特别地用&i明确地给出了i的内存分配。不过一旦你关闭所
有优化措施,即使const long i=10;也会引起后面的编译错误。*/
char h=I; //没有错
char h=i; //编译警告,可能由于数的截短带来错误赋值。
5. 可以避免不必要的内存分配
#define STRING "abcdefghijklmn\n"
const char string[]="abcdefghijklm\n";
...
printf(STRING); //为STRING分配了第一次内存
printf(string); //为string一次分配了内存,以后不再分配
...
printf(STRING); //为STRING分配了第二次内存
printf(string);
...
由于const定义常量从汇编的角度来看,只是给出了对应的内存地址,
而不是象#define一样给出的是立即数,所以,const定义的常量在
程序运行过程中只有一份拷贝,而#define定义的常量在内存中有
若干个拷贝。
7. 是不是const的常量值一定不可以被修改呢?
观察以下一段代码:
const int i=0;
int *p=(int*)&i;
p=100;
通过强制类型转换,将地址赋给变量,再作修改即可以改变const常量值。
1. const常量,如const int max = 100;
优点:const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查,并且在字符替换时可能会产生意料不到的错误(边际效应)
2. const 修饰类的数据成员。如:
class A
{
const int size;
…
}
const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的。因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。所以不能在类声明中初始化const数据成员,因为类的对象未被创建时,编译器不知道const 数据成员的值是什么。如
class A
{
const int size = 100; //错误
int array[size]; //错误,未知的size
}
const数据成员的初始化只能在类的构造函数的初始化表中进行。要想建立在整个类中都恒定的常量,应该用类中的枚举常量来实现。如
class A
{…
enum {size1=100, size2 = 200 };
int array1[size1];
int array2[size2];
}
枚举常量不会占用对象的存储空间,他们在编译时被全部求值。但是枚举常量的隐含数据类型是整数,其最大值有限,且不能表示浮点数。
[总结] 对于非内部数据类型的输入参数,应该将“值传递”的方式改为“const引用传递”,目的是为了提高效率。例如,将void Func(A a)改为void Func(const A &a) (即对自定义类型的数据如果是值传递,则应改成const引用传递,如果内部数据类型如int , char, double之类并且是值传递,则不要改成const引用传递。)
对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x)不应该改为void Func(const int &x)
2) 修饰返回值的const,如const A fun2( ); const A* fun3( ); 此时返回值不能作为左值而被赋值
这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs) //对()运算符的重载
{
return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}
返回值用const修饰可以防止允许这样的操作发生:Rational a,b;
Radional c;
(a*b) = c;
一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。
7. const关键字可以用于参与重载函数的区分。例如:
void Print();
void Print() const;
这两个函数可以用于重载。重载的原则是:常对象调用常成员函数,一般对象调用一般成员函数。
const