首页 > 代码库 > 413. 数组切片 Arithmetic Slices
413. 数组切片 Arithmetic Slices
A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequence:
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
The following sequence is not arithmetic.
1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.
A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.
The function should return the number of arithmetic slices in the array A.
Example:
A = [1, 2, 3, 4] return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.
这道题让我们算一种算数切片,说白了就是找等差数列,限定了等差数列的长度至少为3,那么[1,2,3,4]含有3个长度至少为3的算数切片,我们再来看[1,2,3,4,5]有多少个呢:
len = 3: [1,2,3], [2,3,4], [3,4,5]
len = 4: [1,2,3,4], [2,3,4,5]
len = 5: [1,2,3,4,5]
那么我们可以找出递推式,长度为n的等差数列中含有长度至少为3的算数切片的个数为(n-1)(n-2)/2,那么题目就变成了找原数组中等差数列的长度,然后带入公式去算个数即可
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A) {
int res = 0, len = 2, n = A.size();
for (int i = 2; i < n; ++i) {
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
++len;
} else {
if (len > 2) res += (len - 1) * (len - 2) * 0.5;
len = 2;
}
}
if (len > 2) res += (len - 1) * (len - 2) * 0.5;
return res;
}
};
public int NumberOfArithmeticSlices(int[] A)
{
int n = A.Length;
if (n < 3) return 0;
int[] dp = new int[n];
int result = 0;
for (int i = 2; i < n; ++i) {
if (A[i] - A[i - 1] == A[i - 1] - A[i - 2])
{
dp[i] = dp[i - 1] + 1;
}
result += dp[i];
}
return result;
}
来自为知笔记(Wiz)
413. 数组切片 Arithmetic Slices
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。