首页 > 代码库 > Cassandra使用pycassa批量倒入数据

Cassandra使用pycassa批量倒入数据

本周接手了一个Cassandra系统的维护工作,有一项是需要将应用方的数据导入我们维护的Cassandra集群,并且为应用方提供HTTP的方式访问服务。这是我第一次接触KV系统,原来只是走马观花似的看过KV啊,NoSQL啊。但是实际上没有实际的使用经验。经过两天的学习和接手,终于搞明白了在生产环境中的使用方式。在此简要的笔记一下。本文主要包括的内容有:

Cassandra的简介,

Cassandra的相关CLI

Cassandra的Python API,并且给出一个批量导入数据的例子。


1. Cassandra简介

Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。

Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

和其他数据库比较,有几个突出特点:

  1. 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。
  2. 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。
  3. 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。

一些使Cassandra提高竞争力的其他功能:

  1. 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。
  2. 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。
  3. 分布式写操作 :可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

未完待续。最近实在太忙了。

Cassandra使用pycassa批量倒入数据