首页 > 代码库 > 深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介
深度学习 目标检测算法 SSD 论文简介
一、论文简介:
ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf
Slides:http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf
二、代码训练测试:
https://github.com/weiliu89/caffe/tree/ssd
一、论文算法大致流程:
1.类似“anchor”机制:
如上所示:在 feature map 上进行类似 proposal 的 Bbox 提取,然后大于某一阈值的 Bbox 被认为是 positive samples。后面进行分类回归。
2.整个网络架构设计如下所示:
该框架和 Faster RCNN 最重要的两个区别在于:
1. 将 Faster RCNN 的卷积加全连接层的网络结构,转换为:全卷机结构。这一改变,使得检测的速度,得到很大的提升。
2. 将 RPN 提取 proposal 的机制,转移到各个 scale 的 feature map 上进行,使得检测的精度也非常高。
基于这两个改善的基础上,使得SSD在物体检测算法中脱颖而出。
深度学习 目标检测算法 SSD 论文简介
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。