首页 > 代码库 > 43. Merge Sorted Array && LRU Cache

43. Merge Sorted Array && LRU Cache

Merge Sorted Array

OJ: https://oj.leetcode.com/problems/merge-sorted-array/

Given two sorted integer arrays A and B, merge B into A as one sorted array.

Note: You may assume that A has enough space (size that is greater or equal to m + n) to hold additional elements from B. The number of elements initialized in A and B are m and n respectively.

思想:因为 A 很大, 所以从最大值开始插入, 即从 A 的 m+n 位置开始插入数据。避免了冗余的移动。

class Solution {public:    void merge(int A[], int m, int B[], int n) {        int end = m+n-1;        int iA = m-1, iB = n-1;        while(iB >= 0) {            if(iA < 0 || A[iA] <= B[iB])  A[end--] = B[iB--];            else A[end--] = A[iA--];        }    }};

 

LRU Cache

OJ: https://oj.leetcode.com/problems/lru-cache/

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

思想:

1. 由于要 O(1) 时间确定某 key 是不是在 Cache 中,所以用 Hash_map (<key, node*>), 从而能够O(1)找到结点地址,返回对应的 value。

2. 由于要 O(1) 时间插入、删除某项, 所以各项之间的存储不能用单链表(删除时要O(n)查找前面的结点),不能用顺序表(插入、删除都 O(n)), 故存储使用双链表。

综上分析,查找、插入、删除都是 O(1)时间。(代码尚可优化)

typedef struct node {	node *pre, *next;	int key;	int value;	node() : pre(NULL), next(NULL), key(0), value(0) {}	node(int k, int v) : pre(NULL), next(NULL), key(k), value(v) {}} DoubleLinkList;class LRUCache{public:	LRUCache(int capacity) : _capacity(capacity), cnt(0), front(NULL), tail(NULL) {}	int get(int key) {		unordered_map<int, node*>::iterator it = _map.find(key);		if(it == _map.end()) return -1;				node* s = it->second;		if(s != front) {			if(s == tail) {			    tail = s->pre;			    s->pre = NULL;			    tail->next = NULL;				front->pre = s;				s->next = front;				front = s;			}else {				s->pre->next = s->next;				s->next->pre = s->pre;				s->next = front;				front->pre = s;				front = s;			}		}		return it->second->value;	}	void set(int key, int value) {		unordered_map<int, node*>::iterator it = _map.find(key);		if(it == _map.end()) {			if(++cnt > _capacity) {				if(front == tail) {					_map.erase(tail->key);					front = tail = NULL;				}else{					node *s = tail;					tail = tail->pre;					tail->next = NULL;					_map.erase(s->key);					free(s);					--cnt;				}			}			node *p = new node(key, value);			if(front == NULL) {				front = tail = p;			}else {				p->next = front;				front->pre = p;				front = p;			}			_map.insert(pair<int, node*>(key, p));		}else {			it->second->value = http://www.mamicode.com/value;>

 

43. Merge Sorted Array && LRU Cache