首页 > 代码库 > OpenCL双边滤波实现美颜功能

OpenCL双边滤波实现美颜功能

    OpenCL是一个并行异构计算的框架,包括intel,AMD,英伟达等等许多厂家都有对它的支持,不过英伟达只到1.2版本,主要发展自己的CUDA去了。虽然没有用过CUDA,但个人感觉CUDA比OpenCL更好一点,但OpenCL支持面更管,CPU,GPU,DSP,FPGA等多种芯片都能支持OpenCL。OpenCL与D3D中的像素着色器非常相似。

1.双边滤波原理

    双边滤波器的原理参考女神Rachel-Zhang的博客 双边滤波器的原理及实现. 引自Rachel-Zhang的博客,原理如下:

双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器)。

双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,

技术分享

          权重系数w(i,j,k,l)取决于定义域核技术分享和值域核技术分享的乘积技术分享。同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。

本文基于这个公式用OpenCL实现双边滤波来做美颜。

2.核函数

    磨皮算法原理参考自http://www.zealfilter.com/portal.php?mod=view&aid=138,其中的肤色检测算法不好,我给去掉了,本来还要做个锐化处理的,但发现不做锐化效果也蛮好,所以就先没做,学下一步的OpenCL时在做锐化。

const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;kernel void bilateralBlur(read_only image2d_t src,write_only image2d_t dst)  {    int x = (int)get_global_id(0);      int y = (int)get_global_id(1);      if (x >= get_image_width(src) || y >= get_image_height(src))          return;      int ksize = 11;    float sigma_d = 3.0;    float sigma_r = 0.1;    float4 fij = read_imagef(src, sampler, (int2)(x, y));    float alpha = 0.2;    float4 fkl;    float dkl;    float4 rkl;    float4 wkl;    float4 numerator = (float4)(0.0f,0.0f,0.0f,0.0f);    float4 denominator = (float4)(1.0f, 1.0f, 1.0f, 1.0f);    for (int K = -ksize / 2; K <= ksize / 2; K++)    {        for (int L = -ksize / 2; L <= ksize / 2; L++)        {            fkl = read_imagef(src, sampler, (int2)(x + K, y + L));            dkl = -(K*K + L*L) / (2 * sigma_d*sigma_d);            rkl.x = -(fij.x - fkl.x)*(fij.x - fkl.x) / (2 * sigma_r*sigma_r);            rkl.y = -(fij.y - fkl.y)*(fij.y - fkl.y) / (2 * sigma_r*sigma_r);            rkl.z = -(fij.z - fkl.z)*(fij.z - fkl.z) / (2 * sigma_r*sigma_r);            wkl.x = exp(dkl + rkl.x);            wkl.y = exp(dkl + rkl.y);            wkl.z = exp(dkl + rkl.z);            numerator.x += fkl.x * wkl.x;            numerator.y += fkl.y * wkl.y;            numerator.z += fkl.z * wkl.z;            denominator.x += wkl.x;            denominator.y += wkl.y;            denominator.z += wkl.z;        }    }        float4 gij = (float4)(0.0f, 0.0f, 0.0f, 1.0f);    if (denominator.x > 0 && denominator.y > 0 && denominator.z)    {        gij.x = numerator.x / denominator.x;        gij.y = numerator.y / denominator.y;        gij.z = numerator.z / denominator.z;        //双边滤波后再做一个融合
         gij.x = fij.x*alpha + gij.x*(1.0 - alpha);        gij.y = fij.y*alpha + gij.y*(1.0 - alpha);        gij.z = fij.z*alpha + gij.z*(1.0 - alpha);    }    write_imagef(dst, (int2)(x, y), gij);}

kernel函数里面基本就是把数学公式写出来,可以说是非常简单的。

3.host端代码

    OpenCL代码分为host端的代码和device端的代码,kernel是跑在并行设备device上的,host一般适合跑串行的逻辑性强的代码,device则比较适合用来做计算,如卷积运算。计算机中,通常把CPU当host,把GPU当device。不过实际上CPU也可以作为device,因为intel也是支持OpenCL的。本文以CPU为host,GPU为device。

#include "stdafx.h"#include <iostream>  #include <fstream>  #include <sstream>  #include <malloc.h> #include <string.h>  #include <opencv2/opencv.hpp>  #include <CL/cl.h>     //----------获取OpenCL平台设备信息---------void DisplayPlatformInfo(    cl_platform_id id,    cl_platform_info name,    std::string str){    cl_int errNum;    std::size_t paramValueSize;    errNum = clGetPlatformInfo(        id,        name,        0,        NULL,        &paramValueSize);    if (errNum != CL_SUCCESS)    {        std::cerr << "Failed to find OpenCL platform " << str << "." << std::endl;        return;    }    char * info = (char *)alloca(sizeof(char) * paramValueSize);    errNum = clGetPlatformInfo(        id,        name,        paramValueSize,        info,        NULL);    if (errNum != CL_SUCCESS)    {        std::cerr << "Failed to find OpenCL platform " << str << "." << std::endl;        return;    }    std::cout << "\t" << str << ":\t" << info << std::endl;}template<typename T>void appendBitfield(T info, T value, std::string name, std::string & str){    if (info & value)    {        if (str.length() > 0)        {            str.append(" | ");        }        str.append(name);    }}///// Display information for a particular device.// As different calls to clGetDeviceInfo may return// values of different types a template is used. // As some values returned are arrays of values, a templated class is// used so it can be specialized for this case, see below.//template <typename T>class InfoDevice{public:    static void display(        cl_device_id id,        cl_device_info name,        std::string str)    {        cl_int errNum;        std::size_t paramValueSize;        errNum = clGetDeviceInfo(            id,            name,            0,            NULL,            &paramValueSize);        if (errNum != CL_SUCCESS)        {            std::cerr << "Failed to find OpenCL device info " << str << "." << std::endl;            return;        }        T * info = (T *)alloca(sizeof(T) * paramValueSize);        errNum = clGetDeviceInfo(            id,            name,            paramValueSize,            info,            NULL);        if (errNum != CL_SUCCESS)        {            std::cerr << "Failed to find OpenCL device info " << str << "." << std::endl;            return;        }        // Handle a few special cases        switch (name)        {        case CL_DEVICE_TYPE:        {            std::string deviceType;            appendBitfield<cl_device_type>(                *(reinterpret_cast<cl_device_type*>(info)),                CL_DEVICE_TYPE_CPU,                "CL_DEVICE_TYPE_CPU",                deviceType);            appendBitfield<cl_device_type>(                *(reinterpret_cast<cl_device_type*>(info)),                CL_DEVICE_TYPE_GPU,                "CL_DEVICE_TYPE_GPU",                deviceType);            appendBitfield<cl_device_type>(                *(reinterpret_cast<cl_device_type*>(info)),                CL_DEVICE_TYPE_ACCELERATOR,                "CL_DEVICE_TYPE_ACCELERATOR",                deviceType);            appendBitfield<cl_device_type>(                *(reinterpret_cast<cl_device_type*>(info)),                CL_DEVICE_TYPE_DEFAULT,                "CL_DEVICE_TYPE_DEFAULT",                deviceType);            std::cout << "\t\t" << str << ":\t" << deviceType << std::endl;        }            break;        case CL_DEVICE_SINGLE_FP_CONFIG:        {            std::string fpType;            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_DENORM,                "CL_FP_DENORM",                fpType);            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_INF_NAN,                "CL_FP_INF_NAN",                fpType);            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_ROUND_TO_NEAREST,                "CL_FP_ROUND_TO_NEAREST",                fpType);            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_ROUND_TO_ZERO,                "CL_FP_ROUND_TO_ZERO",                fpType);            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_ROUND_TO_INF,                "CL_FP_ROUND_TO_INF",                fpType);            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_FMA,                "CL_FP_FMA",                fpType);#ifdef CL_FP_SOFT_FLOAT            appendBitfield<cl_device_fp_config>(                *(reinterpret_cast<cl_device_fp_config*>(info)),                CL_FP_SOFT_FLOAT,                "CL_FP_SOFT_FLOAT",                fpType);#endif            std::cout << "\t\t" << str << ":\t" << fpType << std::endl;        }        case CL_DEVICE_GLOBAL_MEM_CACHE_TYPE:        {            std::string memType;            appendBitfield<cl_device_mem_cache_type>(                *(reinterpret_cast<cl_device_mem_cache_type*>(info)),                CL_NONE,                "CL_NONE",                memType);            appendBitfield<cl_device_mem_cache_type>(                *(reinterpret_cast<cl_device_mem_cache_type*>(info)),                CL_READ_ONLY_CACHE,                "CL_READ_ONLY_CACHE",                memType);            appendBitfield<cl_device_mem_cache_type>(                *(reinterpret_cast<cl_device_mem_cache_type*>(info)),                CL_READ_WRITE_CACHE,                "CL_READ_WRITE_CACHE",                memType);            std::cout << "\t\t" << str << ":\t" << memType << std::endl;        }            break;        case CL_DEVICE_LOCAL_MEM_TYPE:        {            std::string memType;            appendBitfield<cl_device_local_mem_type>(                *(reinterpret_cast<cl_device_local_mem_type*>(info)),                CL_GLOBAL,                "CL_LOCAL",                memType);            appendBitfield<cl_device_local_mem_type>(                *(reinterpret_cast<cl_device_local_mem_type*>(info)),                CL_GLOBAL,                "CL_GLOBAL",                memType);            std::cout << "\t\t" << str << ":\t" << memType << std::endl;        }            break;        case CL_DEVICE_EXECUTION_CAPABILITIES:        {            std::string memType;            appendBitfield<cl_device_exec_capabilities>(                *(reinterpret_cast<cl_device_exec_capabilities*>(info)),                CL_EXEC_KERNEL,                "CL_EXEC_KERNEL",                memType);            appendBitfield<cl_device_exec_capabilities>(                *(reinterpret_cast<cl_device_exec_capabilities*>(info)),                CL_EXEC_NATIVE_KERNEL,                "CL_EXEC_NATIVE_KERNEL",                memType);            std::cout << "\t\t" << str << ":\t" << memType << std::endl;        }            break;        case CL_DEVICE_QUEUE_PROPERTIES:        {            std::string memType;            appendBitfield<cl_device_exec_capabilities>(                *(reinterpret_cast<cl_device_exec_capabilities*>(info)),                CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE,                "CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE",                memType);            appendBitfield<cl_device_exec_capabilities>(                *(reinterpret_cast<cl_device_exec_capabilities*>(info)),                CL_QUEUE_PROFILING_ENABLE,                "CL_QUEUE_PROFILING_ENABLE",                memType);            std::cout << "\t\t" << str << ":\t" << memType << std::endl;        }            break;        default:            std::cout << "\t\t" << str << ":\t" << *info << std::endl;            break;        }    }};///// Simple trait class used to wrap base types.//template <typename T>class ArrayType{public:    static bool isChar() { return false; }};///// Specialized for the char (i.e. null terminated string case).//template<>class ArrayType<char>{public:    static bool isChar() { return true; }};///// Specialized instance of class InfoDevice for array types.//template <typename T>class InfoDevice<ArrayType<T> >{public:    static void display(        cl_device_id id,        cl_device_info name,        std::string str)    {        cl_int errNum;        std::size_t paramValueSize;        errNum = clGetDeviceInfo(            id,            name,            0,            NULL,            &paramValueSize);        if (errNum != CL_SUCCESS)        {            std::cerr                << "Failed to find OpenCL device info "                << str                << "."                << std::endl;            return;        }        T * info = (T *)alloca(sizeof(T) * paramValueSize);        errNum = clGetDeviceInfo(            id,            name,            paramValueSize,            info,            NULL);        if (errNum != CL_SUCCESS)        {            std::cerr                << "Failed to find OpenCL device info "                << str                << "."                << std::endl;            return;        }        if (ArrayType<T>::isChar())        {            std::cout << "\t" << str << ":\t" << info << std::endl;        }        else if (name == CL_DEVICE_MAX_WORK_ITEM_SIZES)        {            cl_uint maxWorkItemDimensions;            errNum = clGetDeviceInfo(                id,                CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,                sizeof(cl_uint),                &maxWorkItemDimensions,                NULL);            if (errNum != CL_SUCCESS)            {                std::cerr                    << "Failed to find OpenCL device info "                    << "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS."                    << std::endl;                return;            }            std::cout << "\t" << str << ":\t";            for (cl_uint i = 0; i < maxWorkItemDimensions; i++)            {                std::cout << info[i] << " ";            }            std::cout << std::endl;        }    }};/////  Enumerate platforms and display information about them //  and their associated devices.//void displayInfo(void){    cl_int errNum;    cl_uint numPlatforms;    cl_platform_id * platformIds;    cl_context context = NULL;    // First, query the total number of platforms    errNum = clGetPlatformIDs(0, NULL, &numPlatforms);    if (errNum != CL_SUCCESS || numPlatforms <= 0)    {        std::cerr << "Failed to find any OpenCL platform." << std::endl;        return;    }    // Next, allocate memory for the installed plaforms, and qeury     // to get the list.    platformIds = (cl_platform_id *)alloca(sizeof(cl_platform_id) * numPlatforms);    // First, query the total number of platforms    errNum = clGetPlatformIDs(numPlatforms, platformIds, NULL);    if (errNum != CL_SUCCESS)    {        std::cerr << "Failed to find any OpenCL platforms." << std::endl;        return;    }    std::cout << "Number of platforms: \t" << numPlatforms << std::endl;    // Iterate through the list of platforms displaying associated information    for (cl_uint i = 0; i < numPlatforms; i++) {        // First we display information associated with the platform        DisplayPlatformInfo(            platformIds[i],            CL_PLATFORM_PROFILE,            "CL_PLATFORM_PROFILE");        DisplayPlatformInfo(            platformIds[i],            CL_PLATFORM_VERSION,            "CL_PLATFORM_VERSION");        DisplayPlatformInfo(            platformIds[i],            CL_PLATFORM_VENDOR,            "CL_PLATFORM_VENDOR");        DisplayPlatformInfo(            platformIds[i],            CL_PLATFORM_EXTENSIONS,            "CL_PLATFORM_EXTENSIONS");        // Now query the set of devices associated with the platform        cl_uint numDevices;        errNum = clGetDeviceIDs(            platformIds[i],            CL_DEVICE_TYPE_ALL,            0,            NULL,            &numDevices);        if (errNum != CL_SUCCESS)        {            std::cerr << "Failed to find OpenCL devices." << std::endl;            return;        }        cl_device_id * devices = (cl_device_id *)alloca(sizeof(cl_device_id) * numDevices);        errNum = clGetDeviceIDs(            platformIds[i],            CL_DEVICE_TYPE_ALL,            numDevices,            devices,            NULL);        if (errNum != CL_SUCCESS)        {            std::cerr << "Failed to find OpenCL devices." << std::endl;            return;        }        std::cout << "\tNumber of devices: \t" << numDevices << std::endl;        // Iterate through each device, displaying associated information        for (cl_uint j = 0; j < numDevices; j++)        {            InfoDevice<cl_device_type>::display(                devices[j],                CL_DEVICE_TYPE,                "CL_DEVICE_TYPE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_VENDOR_ID,                "CL_DEVICE_VENDOR_ID");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_COMPUTE_UNITS,                "CL_DEVICE_MAX_COMPUTE_UNITS");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,                "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");            InfoDevice<ArrayType<size_t> >::display(                devices[j],                CL_DEVICE_MAX_WORK_ITEM_SIZES,                "CL_DEVICE_MAX_WORK_ITEM_SIZES");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_MAX_WORK_GROUP_SIZE,                "CL_DEVICE_MAX_WORK_GROUP_SIZE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE");#ifdef CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF,                "CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_INT,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_INT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF,                "CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF");#endif            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_CLOCK_FREQUENCY,                "CL_DEVICE_MAX_CLOCK_FREQUENCY");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_ADDRESS_BITS,                "CL_DEVICE_ADDRESS_BITS");            InfoDevice<cl_ulong>::display(                devices[j],                CL_DEVICE_MAX_MEM_ALLOC_SIZE,                "CL_DEVICE_MAX_MEM_ALLOC_SIZE");            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_IMAGE_SUPPORT,                "CL_DEVICE_IMAGE_SUPPORT");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_READ_IMAGE_ARGS,                "CL_DEVICE_MAX_READ_IMAGE_ARGS");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_WRITE_IMAGE_ARGS,                "CL_DEVICE_MAX_WRITE_IMAGE_ARGS");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE2D_MAX_WIDTH,                "CL_DEVICE_IMAGE2D_MAX_WIDTH");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE2D_MAX_WIDTH,                "CL_DEVICE_IMAGE2D_MAX_WIDTH");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE2D_MAX_HEIGHT,                "CL_DEVICE_IMAGE2D_MAX_HEIGHT");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE3D_MAX_WIDTH,                "CL_DEVICE_IMAGE3D_MAX_WIDTH");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE3D_MAX_HEIGHT,                "CL_DEVICE_IMAGE3D_MAX_HEIGHT");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_IMAGE3D_MAX_DEPTH,                "CL_DEVICE_IMAGE3D_MAX_DEPTH");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_SAMPLERS,                "CL_DEVICE_MAX_SAMPLERS");            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_MAX_PARAMETER_SIZE,                "CL_DEVICE_MAX_PARAMETER_SIZE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MEM_BASE_ADDR_ALIGN,                "CL_DEVICE_MEM_BASE_ADDR_ALIGN");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE,                "CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE");            InfoDevice<cl_device_fp_config>::display(                devices[j],                CL_DEVICE_SINGLE_FP_CONFIG,                "CL_DEVICE_SINGLE_FP_CONFIG");            InfoDevice<cl_device_mem_cache_type>::display(                devices[j],                CL_DEVICE_GLOBAL_MEM_CACHE_TYPE,                "CL_DEVICE_GLOBAL_MEM_CACHE_TYPE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE,                "CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE");            InfoDevice<cl_ulong>::display(                devices[j],                CL_DEVICE_GLOBAL_MEM_CACHE_SIZE,                "CL_DEVICE_GLOBAL_MEM_CACHE_SIZE");            InfoDevice<cl_ulong>::display(                devices[j],                CL_DEVICE_GLOBAL_MEM_SIZE,                "CL_DEVICE_GLOBAL_MEM_SIZE");            InfoDevice<cl_ulong>::display(                devices[j],                CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE,                "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");            InfoDevice<cl_uint>::display(                devices[j],                CL_DEVICE_MAX_CONSTANT_ARGS,                "CL_DEVICE_MAX_CONSTANT_ARGS");            InfoDevice<cl_device_local_mem_type>::display(                devices[j],                CL_DEVICE_LOCAL_MEM_TYPE,                "CL_DEVICE_LOCAL_MEM_TYPE");            InfoDevice<cl_ulong>::display(                devices[j],                CL_DEVICE_LOCAL_MEM_SIZE,                "CL_DEVICE_LOCAL_MEM_SIZE");            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_ERROR_CORRECTION_SUPPORT,                "CL_DEVICE_ERROR_CORRECTION_SUPPORT");#ifdef CL_DEVICE_HOST_UNIFIED_MEMORY            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_HOST_UNIFIED_MEMORY,                "CL_DEVICE_HOST_UNIFIED_MEMORY");#endif            InfoDevice<std::size_t>::display(                devices[j],                CL_DEVICE_PROFILING_TIMER_RESOLUTION,                "CL_DEVICE_PROFILING_TIMER_RESOLUTION");            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_ENDIAN_LITTLE,                "CL_DEVICE_ENDIAN_LITTLE");            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_AVAILABLE,                "CL_DEVICE_AVAILABLE");            InfoDevice<cl_bool>::display(                devices[j],                CL_DEVICE_COMPILER_AVAILABLE,                "CL_DEVICE_COMPILER_AVAILABLE");            InfoDevice<cl_device_exec_capabilities>::display(                devices[j],                CL_DEVICE_EXECUTION_CAPABILITIES,                "CL_DEVICE_EXECUTION_CAPABILITIES");            InfoDevice<cl_command_queue_properties>::display(                devices[j],                CL_DEVICE_QUEUE_PROPERTIES,                "CL_DEVICE_QUEUE_PROPERTIES");            InfoDevice<cl_platform_id>::display(                devices[j],                CL_DEVICE_PLATFORM,                "CL_DEVICE_PLATFORM");            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_NAME,                "CL_DEVICE_NAME");            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_VENDOR,                "CL_DEVICE_VENDOR");            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DRIVER_VERSION,                "CL_DRIVER_VERSION");            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_PROFILE,                "CL_DEVICE_PROFILE");            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_VERSION,                "CL_DEVICE_VERSION");#ifdef CL_DEVICE_OPENCL_C_VERSION            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_OPENCL_C_VERSION,                "CL_DEVICE_OPENCL_C_VERSION");#endif            InfoDevice<ArrayType<char> >::display(                devices[j],                CL_DEVICE_EXTENSIONS,                "CL_DEVICE_EXTENSIONS");            std::cout << std::endl << std::endl;        }    }}//-----------以上为获取并显示OpenCL设备信息的代码------------------cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)  {      cl_int errNum;      cl_program program;      std::ifstream kernelFile(fileName, std::ios::in);      if (!kernelFile.is_open())      {          std::cerr << "Failed to open file for reading: " << fileName << std::endl;          return NULL;      }      std::ostringstream oss;      oss << kernelFile.rdbuf();      std::string srcStdStr = oss.str();      const char *srcStr = srcStdStr.c_str();      program = clCreateProgramWithSource(context, 1,          (const char**)&srcStr,          NULL, NULL);      if (program == NULL)      {          std::cerr << "Failed to create CL program from source." << std::endl;          return NULL;      }      errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);      if (errNum != CL_SUCCESS)      {          // Determine the reason for the error          char buildLog[16384];          clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,              sizeof(buildLog), buildLog, NULL);          std::cerr << "Error in kernel: " << std::endl;          std::cerr << buildLog;          clReleaseProgram(program);          return NULL;      }      return program;  }  void Cleanup(cl_context context, cl_command_queue commandQueue,               cl_program program, cl_kernel kernel, cl_mem imageObjects[2])  {      for (int i = 0; i < 2; i++)      {          if (imageObjects[i] != 0)              clReleaseMemObject(imageObjects[i]);      }      if (commandQueue != 0)          clReleaseCommandQueue(commandQueue);      if (kernel != 0)          clReleaseKernel(kernel);      if (program != 0)          clReleaseProgram(program);      if (context != 0)          clReleaseContext(context);  }    cl_mem LoadImage(cl_context context, char *fileName, int &width, int &height)  {      cv::Mat image1 = cv::imread(fileName);      width = image1.cols;      height = image1.rows;      char *buffer = new char[width * height * 4];      int w = 0;      for (int v = height - 1; v >= 0; v--)      {          for (int u = 0; u <width; u++)          {              buffer[w++] = image1.at<cv::Vec3b>(v, u)[0];              buffer[w++] = image1.at<cv::Vec3b>(v, u)[1];              buffer[w++] = image1.at<cv::Vec3b>(v, u)[2];              w++;          }      }      // Create OpenCL image      cl_image_format clImageFormat;      clImageFormat.image_channel_order = CL_RGBA;      clImageFormat.image_channel_data_type = CL_UNORM_INT8;      cl_int errNum;      cl_mem clImage;      clImage = clCreateImage2D(context,          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,          &clImageFormat,          width,          height,          0,          buffer,          &errNum);      if (errNum != CL_SUCCESS)      {          std::cerr << "Error creating CL image object" << std::endl;          return 0;      }      return clImage;  }  size_t RoundUp(int groupSize, int globalSize)  {      int r = globalSize % groupSize;      if (r == 0)      {          return globalSize;      }      else      {          return globalSize + groupSize - r;      }  }  int main(int argc, char** argv)  {      cl_context context = 0;      cl_command_queue commandQueue = 0;      cl_program program = 0;      cl_device_id device = 0;      cl_kernel kernel = 0;      cl_mem imageObjects[2] = { 0, 0 };      cl_int errNum;      //打印所有OpenCL平台设备信息    displayInfo();    cl_uint numplatforms;    errNum = clGetPlatformIDs(0, NULL, &numplatforms);    if (errNum != CL_SUCCESS || numplatforms <= 0){        printf("没有找到OpenCL平台 \n");        return 1;    }    cl_platform_id * platformIds;    platformIds = (cl_platform_id*)alloca(sizeof(cl_platform_id)*numplatforms);    errNum = clGetPlatformIDs(numplatforms, platformIds, NULL);    if (errNum != CL_SUCCESS){        printf("没有找到OpenCL平台 \n");        return 1;    }    printf("平台数:%d \n", numplatforms);    //选用CL_DEVICE_MAX_WORK_GROUP_SIZE最大的显卡    cl_uint numDevices,index_platform = 0,index_device = 0;    cl_device_id *devicesIds;    std::size_t paramValueSize = 0;    for (cl_uint i = 0; i < numplatforms; i++){        errNum = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_GPU, 0, NULL, &numDevices);        if (errNum != CL_SUCCESS || numDevices <= 0){            printf("平台 %d 没有找到设备",i);            continue;        }        devicesIds = (cl_device_id*)alloca(sizeof(cl_device_id)*numDevices);        errNum = clGetDeviceIDs(platformIds[i], CL_DEVICE_TYPE_GPU, numDevices, devicesIds, NULL);        if (errNum != CL_SUCCESS ){            printf("平台 %d 获取设备ID失败", i);            continue;        }        for (cl_uint j = 0; j < numDevices; j++){            std::size_t tmpSize = 0;            errNum = clGetDeviceInfo(devicesIds[j], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &tmpSize, NULL);            if (errNum != CL_SUCCESS){                std::cerr << "Failed to find OpenCL device info " << std::endl;                continue;            }            if (tmpSize >= paramValueSize){                index_platform = i;                index_device = j;            }        }    }    cl_context_properties contextProperties[] ={        CL_CONTEXT_PLATFORM,        (cl_context_properties)platformIds[index_platform],        0    };    context = clCreateContext(contextProperties, numDevices, devicesIds, NULL, NULL, &errNum);    if (errNum != CL_SUCCESS){        std::cerr << "Failed to Create Context " << std::endl;        return 1;    }    device = devicesIds[index_device];    // Create a command-queue on the first device available      // on the created context      commandQueue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &errNum);    if (commandQueue == NULL)  {          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Make sure the device supports images, otherwise exit      cl_bool imageSupport = CL_FALSE;      clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool), &imageSupport, NULL);      if (imageSupport != CL_TRUE)  {          std::cerr << "OpenCL device does not support images." << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Load input image from file and load it into      // an OpenCL image object      int width, height;      char *src0 = "test.png";    imageObjects[0] = LoadImage(context, src0, width, height);      if (imageObjects[0] == 0)  {          std::cerr << "Error loading: " << std::string(src0) << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Create ouput image object      cl_image_format clImageFormat;      clImageFormat.image_channel_order = CL_RGBA;      clImageFormat.image_channel_data_type = CL_UNORM_INT8;      imageObjects[1] = clCreateImage2D(context,          CL_MEM_WRITE_ONLY,          &clImageFormat,          width,          height,          0,          NULL,          &errNum);      if (errNum != CL_SUCCESS){          std::cerr << "Error creating CL output image object." << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Create OpenCL program      program = CreateProgram(context, device, "bilateralBlur.cl");      if (program == NULL)  {          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Create OpenCL kernel      kernel = clCreateKernel(program, "bilateralBlur", NULL);      if (kernel == NULL)  {          std::cerr << "Failed to create kernel" << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      // Set the kernel arguments      errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &imageObjects[0]);      errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &imageObjects[1]);      if (errNum != CL_SUCCESS)  {          std::cerr << "Error setting kernel arguments." << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);          system("pause") ; return 1;     }      size_t localWorkSize[2] = { 32, 32 };      size_t globalWorkSize[2] = { RoundUp(localWorkSize[0], width),          RoundUp(localWorkSize[1], height) };      cl_event prof_event;    // Queue the kernel up for execution      errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL,          globalWorkSize, localWorkSize,          0, NULL, &prof_event);    if (errNum != CL_SUCCESS)      {          std::cerr << "Error queuing kernel for execution." << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }    clFinish(commandQueue);    errNum = clWaitForEvents(1, &prof_event);    if (errNum)    {        printf("clWaitForEvents() failed for histogram_rgba_unorm8 kernel. (%d)\n", errNum);        return EXIT_FAILURE;    }    cl_ulong ev_start_time = (cl_ulong)0;    cl_ulong ev_end_time = (cl_ulong)0;    size_t return_bytes;    errNum = clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_QUEUED,sizeof(cl_ulong), &ev_start_time, &return_bytes);    errNum |= clGetEventProfilingInfo(prof_event, CL_PROFILING_COMMAND_END,sizeof(cl_ulong), &ev_end_time, &return_bytes);    if (errNum)    {        printf("clGetEventProfilingInfo() failed for kernel. (%d)\n", errNum);        return EXIT_FAILURE;    }    double run_time = (double)(ev_end_time - ev_start_time);    printf("Image dimensions: %d x %d pixels, Image type = CL_RGBA, CL_UNORM_INT8\n", width, height);    printf("Work Timer:%lfms\n", run_time / 1000000);    clReleaseEvent(prof_event);    // Read the output buffer back to the Host      char *buffer = new char[width * height * 4];      size_t origin[3] = { 0, 0, 0 };      size_t region[3] = { width, height, 1 };      errNum = clEnqueueReadImage(commandQueue, imageObjects[1], CL_TRUE,          origin, region, 0, 0, buffer,          0, NULL, NULL);      if (errNum != CL_SUCCESS)  {          std::cerr << "Error reading result buffer." << std::endl;          Cleanup(context, commandQueue, program, kernel, imageObjects);           system("pause") ; return 1;     }      std::cout << std::endl;      std::cout << "Executed program succesfully." << std::endl;      // Save the image out to disk      char *saveImage = "output.jpg";    //std::cout << buffer << std::endl;      cv::Mat imageColor = cv::imread(src0);      cv::Mat imageColor2;      imageColor2.create(imageColor.rows, imageColor.cols, imageColor.type());      int w = 0;      for (int v = imageColor2.rows-1; v >=0; v--)  {          for (int u =0 ; u <imageColor2.cols; u++)  {              imageColor2.at<cv::Vec3b>(v, u)[0] = buffer[w++];              imageColor2.at<cv::Vec3b>(v, u)[1] = buffer[w++];              imageColor2.at<cv::Vec3b>(v, u)[2] = buffer[w++];              w++;          }      }    cv::imshow("原始图像", imageColor);    cv::imshow("磨皮后", imageColor2);      cv::imwrite(saveImage, imageColor2);      cv::waitKey(0);      delete[] buffer;      Cleanup(context, commandQueue, program, kernel, imageObjects);      return 0;  }

    这个host端的程序包含了opencv的一点内容,主要是用opencv来读取图片,用其他方式读取图片当然也是可以的。实际上,opencv本身有一个ocl模块,貌似是由AMD给opencv做得OpenCL扩展,其中包括了许多用OpenCL实现的opencv的一些常用函数,其中就已经包括了双边滤波和自适应双边滤波。

    这段程序选用了CL_DEVICE_MAX_WORK_GROUP_SIZE最大的显卡,最佳的OpenCL设备的选择应当综合考虑,在我的电脑上CL_DEVICE_MAX_WORK_GROUP_SIZE的CPU似乎就是最佳的OpenCL设备,虽然在实际获取的设备信息中CPU的许多参数比GPU强,但是实际运行的时长却是GPU的几倍,所以对于用哪些参数来判断一个OpenCL设备是最佳的我也不是很清楚,希望懂得朋友可以指导一二。

    另外,这段程序其实是很简单的,实际有效的代码只有300多行,获取设备信息的代码只是为了看看自己的电脑上有哪些OpenCL设备以及相关的信息,main中的displayInfo();完全可以注释掉。

    另外关于OpenCL库文件的获取,可以从intel,英伟达,AMD等获取到,我所使用的OpenCL的头文件和lib文件就是从英伟达的CUDA里面copy出来的,你也可以直接就是用我的。

4.运行结果

(1)硬件信息

技术分享技术分享

(2)控制台输出OpenCL设备的信息

Number of platforms:    2
        CL_PLATFORM_PROFILE:    FULL_PROFILE
        CL_PLATFORM_VERSION:    OpenCL 2.0
        CL_PLATFORM_VENDOR:     Intel(R) Corporation
        CL_PLATFORM_EXTENSIONS: cl_intel_dx9_media_sharing cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_d3d11_sharing cl_khr_depth_images cl_khr_dx9_media_sharing cl_khr_gl_sharing cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_icd cl_khr_image2d_from_buffer cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_spir
        Number of devices:      2
                CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU
                CL_DEVICE_VENDOR_ID:    32902
                CL_DEVICE_MAX_COMPUTE_UNITS:    24
                CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS:     3
        CL_DEVICE_MAX_WORK_ITEM_SIZES:  256 256 256
                CL_DEVICE_MAX_WORK_GROUP_SIZE:  256
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT:   1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE:        0
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF:  1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR:     1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT:    1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_INT:      1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG:     1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT:    1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE:   0
                CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF:     1
                CL_DEVICE_MAX_CLOCK_FREQUENCY:  1050
                CL_DEVICE_ADDRESS_BITS: 32
                CL_DEVICE_MAX_MEM_ALLOC_SIZE:   390280806
                CL_DEVICE_IMAGE_SUPPORT:        1
                CL_DEVICE_MAX_READ_IMAGE_ARGS:  128
                CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 128
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_HEIGHT:   16384
                CL_DEVICE_IMAGE3D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE3D_MAX_HEIGHT:   16384
                CL_DEVICE_IMAGE3D_MAX_DEPTH:    2048
                CL_DEVICE_MAX_SAMPLERS: 16
                CL_DEVICE_MAX_PARAMETER_SIZE:   1024
                CL_DEVICE_MEM_BASE_ADDR_ALIGN:  1024
                CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE:     128
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_FP_DENORM | CL_FP_INF_NAN | CL_FP_ROUND_TO_NEAREST | CL_FP_ROUND_TO_ZERO | CL_FP_ROUND_TO_INF
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_READ_ONLY_CACHE | CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHE_TYPE:        CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE:    64
                CL_DEVICE_GLOBAL_MEM_CACHE_SIZE:        524288
                CL_DEVICE_GLOBAL_MEM_SIZE:      1561123226
                CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE:     65536
                CL_DEVICE_MAX_CONSTANT_ARGS:    8
                CL_DEVICE_LOCAL_MEM_TYPE:
                CL_DEVICE_LOCAL_MEM_SIZE:       65536
                CL_DEVICE_ERROR_CORRECTION_SUPPORT:     0
                CL_DEVICE_HOST_UNIFIED_MEMORY:  1
                CL_DEVICE_PROFILING_TIMER_RESOLUTION:   83
                CL_DEVICE_ENDIAN_LITTLE:        1
                CL_DEVICE_AVAILABLE:    1
                CL_DEVICE_COMPILER_AVAILABLE:   1
                CL_DEVICE_EXECUTION_CAPABILITIES:       CL_EXEC_KERNEL
                CL_DEVICE_QUEUE_PROPERTIES:     CL_QUEUE_PROFILING_ENABLE
                CL_DEVICE_PLATFORM:     00DEC488
        CL_DEVICE_NAME: Intel(R) HD Graphics 520
        CL_DEVICE_VENDOR:       Intel(R) Corporation
        CL_DRIVER_VERSION:      20.19.15.4364
        CL_DEVICE_PROFILE:      FULL_PROFILE
        CL_DEVICE_VERSION:      OpenCL 2.0
        CL_DEVICE_OPENCL_C_VERSION:     OpenCL C 2.0
        CL_DEVICE_EXTENSIONS:   cl_intel_accelerator cl_intel_advanced_motion_estimation cl_intel_ctz cl_intel_d3d11_nv12_media_sharing cl_intel_dx9_media_sharing cl_intel_motion_estimation cl_intel_simultaneous_sharing cl_intel_subgroups cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_d3d10_sharing cl_khr_d3d11_sharing cl_khr_depth_images cl_khr_dx9_media_sharing cl_khr_fp16 cl_khr_gl_depth_images cl_khr_gl_event cl_khr_gl_msaa_sharing cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_gl_sharing cl_khr_icd cl_khr_image2d_from_buffer cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_mipmap_image cl_khr_mipmap_image_writes cl_khr_spir


                CL_DEVICE_TYPE: CL_DEVICE_TYPE_CPU
                CL_DEVICE_VENDOR_ID:    32902
                CL_DEVICE_MAX_COMPUTE_UNITS:    4
                CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS:     3
        CL_DEVICE_MAX_WORK_ITEM_SIZES:  8192 8192 8192
                CL_DEVICE_MAX_WORK_GROUP_SIZE:  8192
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT:   1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE:        1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF:  0
                CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR:     32
                CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT:    16
                CL_DEVICE_NATIVE_VECTOR_WIDTH_INT:      8
                CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG:     4
                CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT:    8
                CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE:   4
                CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF:     0
                CL_DEVICE_MAX_CLOCK_FREQUENCY:  2500
                CL_DEVICE_ADDRESS_BITS: 32
                CL_DEVICE_MAX_MEM_ALLOC_SIZE:   536838144
                CL_DEVICE_IMAGE_SUPPORT:        1
                CL_DEVICE_MAX_READ_IMAGE_ARGS:  480
                CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 480
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_HEIGHT:   16384
                CL_DEVICE_IMAGE3D_MAX_WIDTH:    2048
                CL_DEVICE_IMAGE3D_MAX_HEIGHT:   2048
                CL_DEVICE_IMAGE3D_MAX_DEPTH:    2048
                CL_DEVICE_MAX_SAMPLERS: 480
                CL_DEVICE_MAX_PARAMETER_SIZE:   3840
                CL_DEVICE_MEM_BASE_ADDR_ALIGN:  1024
                CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE:     128
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_FP_DENORM | CL_FP_INF_NAN | CL_FP_ROUND_TO_NEAREST
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_READ_ONLY_CACHE | CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHE_TYPE:        CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE:    64
                CL_DEVICE_GLOBAL_MEM_CACHE_SIZE:        262144
                CL_DEVICE_GLOBAL_MEM_SIZE:      2147352576
                CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE:     131072
                CL_DEVICE_MAX_CONSTANT_ARGS:    480
                CL_DEVICE_LOCAL_MEM_TYPE:       CL_LOCAL | CL_GLOBAL
                CL_DEVICE_LOCAL_MEM_SIZE:       32768
                CL_DEVICE_ERROR_CORRECTION_SUPPORT:     0
                CL_DEVICE_HOST_UNIFIED_MEMORY:  1
                CL_DEVICE_PROFILING_TIMER_RESOLUTION:   395
                CL_DEVICE_ENDIAN_LITTLE:        1
                CL_DEVICE_AVAILABLE:    1
                CL_DEVICE_COMPILER_AVAILABLE:   1
                CL_DEVICE_EXECUTION_CAPABILITIES:       CL_EXEC_KERNEL | CL_EXEC_NATIVE_KERNEL
                CL_DEVICE_QUEUE_PROPERTIES:     CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_PROFILING_ENABLE
                CL_DEVICE_PLATFORM:     00DEC488
        CL_DEVICE_NAME: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
        CL_DEVICE_VENDOR:       Intel(R) Corporation
        CL_DRIVER_VERSION:      5.2.0.10094
        CL_DEVICE_PROFILE:      FULL_PROFILE
        CL_DEVICE_VERSION:      OpenCL 2.0 (Build 10094)
        CL_DEVICE_OPENCL_C_VERSION:     OpenCL C 2.0
        CL_DEVICE_EXTENSIONS:   cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_depth_images cl_khr_3d_image_writes cl_intel_exec_by_local_thread cl_khr_spir cl_khr_dx9_media_sharing cl_intel_dx9_media_sharing cl_khr_d3d11_sharing cl_khr_gl_sharing cl_khr_fp64 cl_khr_image2d_from_buffer


        CL_PLATFORM_PROFILE:    FULL_PROFILE
        CL_PLATFORM_VERSION:    OpenCL 1.2 CUDA 8.0.44
        CL_PLATFORM_VENDOR:     NVIDIA Corporation
        CL_PLATFORM_EXTENSIONS: cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_d3d10_sharing cl_khr_d3d10_sharing cl_nv_d3d11_sharing cl_nv_copy_opts
        Number of devices:      1
                CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU
                CL_DEVICE_VENDOR_ID:    4318
                CL_DEVICE_MAX_COMPUTE_UNITS:    3
                CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS:     3
        CL_DEVICE_MAX_WORK_ITEM_SIZES:  1024 1024 64
                CL_DEVICE_MAX_WORK_GROUP_SIZE:  1024
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT:   1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG:  1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT: 1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE:        1
                CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF:  0
                CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR:     1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT:    1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_INT:      1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG:     1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT:    1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE:   1
                CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF:     0
                CL_DEVICE_MAX_CLOCK_FREQUENCY:  1241
                CL_DEVICE_ADDRESS_BITS: 32
                CL_DEVICE_MAX_MEM_ALLOC_SIZE:   536870912
                CL_DEVICE_IMAGE_SUPPORT:        1
                CL_DEVICE_MAX_READ_IMAGE_ARGS:  256
                CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 16
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_WIDTH:    16384
                CL_DEVICE_IMAGE2D_MAX_HEIGHT:   16384
                CL_DEVICE_IMAGE3D_MAX_WIDTH:    4096
                CL_DEVICE_IMAGE3D_MAX_HEIGHT:   4096
                CL_DEVICE_IMAGE3D_MAX_DEPTH:    4096
                CL_DEVICE_MAX_SAMPLERS: 32
                CL_DEVICE_MAX_PARAMETER_SIZE:   4352
                CL_DEVICE_MEM_BASE_ADDR_ALIGN:  4096
                CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE:     128
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_FP_DENORM | CL_FP_INF_NAN | CL_FP_ROUND_TO_NEAREST | CL_FP_ROUND_TO_ZERO | CL_FP_ROUND_TO_INF | CL_FP_FMA
                CL_DEVICE_SINGLE_FP_CONFIG:     CL_READ_ONLY_CACHE | CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHE_TYPE:        CL_READ_WRITE_CACHE
                CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE:    128
                CL_DEVICE_GLOBAL_MEM_CACHE_SIZE:        49152
                CL_DEVICE_GLOBAL_MEM_SIZE:      2147483648
                CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE:     65536
                CL_DEVICE_MAX_CONSTANT_ARGS:    9
                CL_DEVICE_LOCAL_MEM_TYPE:
                CL_DEVICE_LOCAL_MEM_SIZE:       49152
                CL_DEVICE_ERROR_CORRECTION_SUPPORT:     0
                CL_DEVICE_HOST_UNIFIED_MEMORY:  0
                CL_DEVICE_PROFILING_TIMER_RESOLUTION:   1000
                CL_DEVICE_ENDIAN_LITTLE:        1
                CL_DEVICE_AVAILABLE:    1
                CL_DEVICE_COMPILER_AVAILABLE:   1
                CL_DEVICE_EXECUTION_CAPABILITIES:       CL_EXEC_KERNEL
                CL_DEVICE_QUEUE_PROPERTIES:     CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_PROFILING_ENABLE
                CL_DEVICE_PLATFORM:     00E30580
        CL_DEVICE_NAME: GeForce 940MX
        CL_DEVICE_VENDOR:       NVIDIA Corporation
        CL_DRIVER_VERSION:      369.30
        CL_DEVICE_PROFILE:      FULL_PROFILE
        CL_DEVICE_VERSION:      OpenCL 1.2 CUDA
        CL_DEVICE_OPENCL_C_VERSION:     OpenCL C 1.2
        CL_DEVICE_EXTENSIONS:   cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_d3d10_sharing cl_khr_d3d10_sharing cl_nv_d3d11_sharing cl_nv_copy_opts


平台数:2
Image dimensions: 273 x 415 pixels, Image type = CL_RGBA, CL_UNORM_INT8
Work Timer:3.422816ms

Executed program succesfully.

273X415大小的图片用时不到4ms。

(3)双边滤波的效果

技术分享

    效果应该来说是很明显的。不过由于没有肤色检测和最后一步锐化,以及参数的设置等问题,连我朋友都说这个磨皮效果太嫩了,看着很假。所以在算法上我这个是有待完善的。

    另外,在速度上,这个算法应该依然有优化的空间。

 

 

源码:http://download.csdn.net/download/qq_33892166/9761287

 

  

OpenCL双边滤波实现美颜功能