首页 > 代码库 > Java面试6-10
Java面试6-10
6、数据库与缓存不一致问题
本文主要讨论这么几个问题:
(1)“缓存与数据库”需求缘起
(2)“淘汰缓存”还是“更新缓存”
(3)缓存和数据库的操作时序
(4)缓存和数据库架构简析
一、需求缘起
场景介绍
缓存是一种提高系统读性能的常见技术,对于读多写少的应用场景,我们经常使用缓存来进行优化。
例如对于用户的余额信息表account(uid, money),业务上的需求是:
(1)查询用户的余额,SELECT money FROM account WHERE uid=XXX,占99%的请求
(2)更改用户余额,UPDATE account SET money=XXX WHERE uid=XXX,占1%的请求
由于大部分的请求是查询,我们在缓存中建立uid到money的键值对,能够极大降低数据库的压力。
读操作流程
有了数据库和缓存两个地方存放数据之后(uid->money),每当需要读取相关数据时(money),操作流程一般是这样的:
(1)读取缓存中是否有相关数据,uid->money
(2)如果缓存中有相关数据money,则返回【这就是所谓的数据命中“hit”】
(3)如果缓存中没有相关数据money,则从数据库读取相关数据money【这就是所谓的数据未命中“miss”】,放入缓存中uid->money,再返回
缓存的命中率 = 命中缓存请求个数/总缓存访问请求个数 = hit/(hit+miss)
上面举例的余额场景,99%的读,1%的写,这个缓存的命中率是非常高的,会在95%以上。
那么问题来了
当数据money发生变化的时候:
(1)是更新缓存中的数据,还是淘汰缓存中的数据呢?
(2)是先操纵数据库中的数据再操纵缓存中的数据,还是先操纵缓存中的数据再操纵数据库中的数据呢?
(3)缓存与数据库的操作,在架构上是否有优化的空间呢?
这是本文关注的三个核心问题。
二、更新缓存 VS 淘汰缓存
什么是更新缓存:数据不但写入数据库,还会写入缓存
什么是淘汰缓存:数据只会写入数据库,不会写入缓存,只会把数据淘汰掉
更新缓存的优点:缓存不会增加一次miss,命中率高
淘汰缓存的优点:简单(我去,更新缓存我也觉得很简单呀,楼主你太敷衍了吧)
那到底是选择更新缓存还是淘汰缓存呢,主要取决于“更新缓存的复杂度”。
例如,上述场景,只是简单的把余额money设置成一个值,那么:
(1)淘汰缓存的操作为deleteCache(uid)
(2)更新缓存的操作为setCache(uid, money)
更新缓存的代价很小,此时我们应该更倾向于更新缓存,以保证更高的缓存命中率
如果余额是通过很复杂的数据计算得出来的,例如业务上除了账户表account,还有商品表product,折扣表discount
account(uid, money)
product(pid, type, price, pinfo)
discount(type, zhekou)
业务场景是用户买了一个商品product,这个商品的价格是price,这个商品从属于type类商品,type类商品在做促销活动要打折扣zhekou,购买了商品过后,这个余额的计算就复杂了,需要:
(1)先把商品的品类,价格取出来:SELECT type, price FROM product WHERE pid=XXX
(2)再把这个品类的折扣取出来:SELECT zhekou FROM discount WHERE type=XXX
(3)再把原有余额从缓存中查询出来money = getCache(uid)
(4)再把新的余额写入到缓存中去setCache(uid, money-price*zhekou)
更新缓存的代价很大,此时我们应该更倾向于淘汰缓存。
however,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。
三、先操作数据库 vs 先操作缓存
OK,当写操作发生时,假设淘汰缓存作为对缓存通用的处理方式,又面临两种抉择:
(1)先写数据库,再淘汰缓存
(2)先淘汰缓存,再写数据库
究竟采用哪种时序呢?
还记得在《冗余表如何保证数据一致性》文章(点击查看)里“究竟先写正表还是先写反表”的结论么?
对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:
如果出现不一致,谁先做对业务的影响较小,就谁先执行。
由于写数据库与淘汰缓存不能保证原子性,谁先谁后同样要遵循上述原则。
假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。
假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。
结论:数据和缓存的操作时序,结论是清楚的:先淘汰缓存,再写数据库。
四、缓存架构优化
上述缓存架构有一个缺点:业务方需要同时关注缓存与DB,有没有进一步的优化空间呢?有两种常见的方案,一种主流方案,一种非主流方案(一家之言,勿拍)。
主流优化方案是服务化:加入一个服务层,向上游提供帅气的数据访问接口,向上游屏蔽底层数据存储的细节,这样业务线不需要关注数据是来自于cache还是DB。
非主流方案是异步缓存更新:业务线所有的写操作都走数据库,所有的读操作都总缓存,由一个异步的工具来做数据库与缓存之间数据的同步,具体细节是:
(1)要有一个init cache的过程,将需要缓存的数据全量写入cache
(2)如果DB有写操作,异步更新程序读取binlog,更新cache
在(1)和(2)的合作下,cache中有全部的数据,这样:
(a)业务线读cache,一定能够hit(很短的时间内,可能有脏数据),无需关注数据库
(b)业务线写DB,cache中能得到异步更新,无需关注缓存
这样将大大简化业务线的调用逻辑,存在的缺点是,如果缓存的数据业务逻辑比较复杂,async-update异步更新的逻辑可能也会比较复杂。
五、其他未尽事宜
本文只讨论了缓存架构设计中需要注意的几个细节点,如果数据库架构采用了一主多从,读写分离的架构,在特殊时序下,还很可能引发数据库与缓存的不一致,这个不一致如何优化,后续的文章再讨论吧。
六、结论强调
(1)淘汰缓存是一种通用的缓存处理方式
(2)先淘汰缓存,再写数据库的时序是毋庸置疑的
(3)服务化是向业务方屏蔽底层数据库与缓存复杂性的一种通用方式
本文主要讨论这么几个问题:
(1)数据库主从延时为何会导致缓存数据不一致
(2)优化思路与方案
一、需求缘起
上一篇《缓存架构设计细节二三事》中有一个小优化点,在只有主库时,通过“串行化”的思路可以解决缓存与数据库中数据不一致。引发大家热烈讨论的点是“在主从同步,读写分离的数据库架构下,有可能出现脏数据入缓存的情况,此时串行化方案不再适用了”,这就是本文要讨论的主题。
二、为什么数据会不一致
为什么会读到脏数据,有这么几种情况:
(1)单库情况下,服务层的并发读写,缓存与数据库的操作交叉进行
虽然只有一个DB,在上述诡异异常时序下,也可能脏数据入缓存:
1)请求A发起一个写操作,第一步淘汰了cache,然后这个请求因为各种原因在服务层卡住了(进行大量的业务逻辑计算,例如计算了1秒钟),如上图步骤1
2)请求B发起一个读操作,读cache,cache miss,如上图步骤2
3)请求B继续读DB,读出来一个脏数据,然后脏数据入cache,如上图步骤3
4)请求A卡了很久后终于写数据库了,写入了最新的数据,如上图步骤4
这种情况虽然少见,但理论上是存在的,后发起的请求B在先发起的请求A中间完成了。
(2)主从同步,读写分离的情况下,读从库读到旧数据
在数据库架构做了一主多从,读写分离时,更多的脏数据入缓存是下面这种情况:
1)请求A发起一个写操作,第一步淘汰了cache,如上图步骤1
2)请求A写数据库了,写入了最新的数据,如上图步骤2
3)请求B发起一个读操作,读cache,cache miss,如上图步骤3
4)请求B继续读DB,读的是从库,此时主从同步还没有完成,读出来一个脏数据,然后脏数据入cache,如上图步4
5)最后数据库的主从同步完成了,如上图步骤5
这种情况请求A和请求B的时序是完全没有问题的,是主动同步的时延(假设延时1秒钟)中间有读请求读从库读到脏数据导致的不一致。
那怎么来进行优化呢?
三、不一致优化思路
有同学说“那能不能先操作数据库,再淘汰缓存”,这个是不行的,在《缓存和数据库先操作谁》的文章中介绍过。
出现不一致的根本原因:
(1)单库情况下,服务层在进行1s的逻辑计算过程中,可能读到旧数据入缓存
(2)主从库+读写分离情况下,在1s钟主从同步延时过程中,可能读到旧数据入缓存
既然旧数据就是在那1s的间隙中入缓存的,是不是可以在写请求完成后,再休眠1s,再次淘汰缓存,就能将这1s内写入的脏数据再次淘汰掉呢?
答案是可以的。
写请求的步骤由2步升级为3步:
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这样的话,1秒内有脏数据如缓存,也会被再次淘汰掉,但带来的问题是:
(1)所有的写请求都阻塞了1秒,大大降低了写请求的吞吐量,增长了处理时间,业务上是接受不了的
再次分析,其实第二次淘汰缓存是“为了保证缓存一致”而做的操作,而不是“业务要求”,所以其实无需等待,用一个异步的timer,或者利用消息总线异步的来做这个事情即可:
写请求由2步升级为2.5步:
(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(2.5)不再休眠1s,而是往消息总线esb发送一个消息,发送完成之后马上就能返回
这样的话,写请求的处理时间几乎没有增加,这个方法淘汰了缓存两次,因此被称为“缓存双淘汰”法。这个方法付出的代价是,缓存会增加1次cache miss(代价几乎可以忽略)。
而在下游,有一个异步淘汰缓存的消费者,在接收到消息之后,asy-expire在1s之后淘汰缓存。这样,即使1s内有脏数据入缓存,也有机会再次被淘汰掉。
上述方案有一个缺点,需要业务线的写操作增加一个步骤,有没有方案对业务线的代码没有任何入侵呢,是有的,这个方案在《细聊冗余表数据一致性》中也提到过,通过分析线下的binlog来异步淘汰缓存:
业务线的代码就不需要动了,新增一个线下的读binlog的异步淘汰模块,读取到binlog中的数据,异步的淘汰缓存。
提问:为什么上文总是说1s,这个1s是怎么来的?
回答:1s只是一个举例,需要根据业务的数据量与并发量,观察主从同步的时延来设定这个值。例如主从同步的时延为200ms,这个异步淘汰cache设置为258ms就是OK的。
四、总结
在“异常时序”或者“读从库”导致脏数据入缓存时,可以用二次异步淘汰的“缓存双淘汰”法来解决缓存与数据库中数据不一致的问题,具体实施至少有三种方案:
(1)timer异步淘汰(本文没有细讲,本质就是起个线程专门异步二次淘汰缓存)
(2)总线异步淘汰
(3)读binlog异步淘汰
7、LinkedHashMap的应用
LinkedHashMap维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序(insert-order)或者是访问顺序,其中默认的迭代访问顺序就是插入顺序,即可以按插入的顺序遍历元素。基于LinkedHashMap的访问顺序的特点,可构造一个LRU(Least Recently Used)最近最少使用简单缓存。也有一些开源的缓存产品如ehcache的淘汰策略(LRU)就是在LinkedHashMap上扩展的。
public class LruCache<K, V> extends LinkedHashMap<K, V> { /** 最大容量 */ private int maxCapacity; public LruCache(int maxCapacity) { super(16, 0.75f, true); this.maxCapacity = maxCapacity; } public int getMaxCapacity() { return this.maxCapacity; } public void setMaxCapacity(int maxCapacity) { this.maxCapacity = maxCapacity; } /** * 当列表中的元素个数大于指定的最大容量时,返回true,并将最老的元素删除。 */ @Override protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) { if (super.size() > maxCapacity) { return true; } return false; } }
public class LruCacheTest { public static void main(String[] args) { LruCache<String, Object> cache = new LruCache<String, Object>(10); for (int i = 1; i <= 15; i++) { cache.put(i + "", i); } // 此时访问指定KEY的元素 cache.get("10"); Iterator<Entry<String, Object>> iterator = cache.entrySet().iterator(); for (; iterator.hasNext();) { Entry<String, Object> entry = iterator.next(); System.out.println("key=" + entry.getKey() + ",value="http://www.mamicode.com/+ entry.getValue()); >
输出如下:
key=7,value=http://www.mamicode.com/7 >
8、Git产生冲突的解决方案
Java面试6-10