首页 > 代码库 > 【开源】ZXING的.NET版本源码解析

【开源】ZXING的.NET版本源码解析

[概述]

ZXing ("zebra crossing") is an open-source, multi-format 1D/2D barcode image processing library implemented in Java, with ports to other languages.

开源地址:

https://github.com/zxing/zxing

[工程结构]

以ZXing.Net.Source.0.14.0.0版本为例,此文件目录下对应两个工程:

Base和WinMD,我们主要分析Base工程,其中:

ZXing.Net.Source.0.14.0.0\Base\Source\lib目录下的工程为源码工程,zxing.vs2012为源码工程Solution文件;

ZXing.Net.Source.0.14.0.0\Base\Clients\WindowsFormsDemo目录下的工程为ZXING输出类库的应用工程,WindowsFormsDemo为应用工程Solution文件。

[应用工程分析]

WindowsFormsDemo有三个Tab,分别为Decoder/Encoder/WebCam,分别实现图片读码/二维码生成/网络摄像头采样读码(主要调用了avicap32.dll,它是Windows API应用程序接口相关模块,用于对摄像头和其它视频硬件进行AⅥ电影和视频的截取,详见工程文件WebCam.cs)。

Decoder(图片读码):

      private void btnStartDecoding_Click(object sender, EventArgs e)      {         var fileName = txtBarcodeImageFile.Text;         if (!File.Exists(fileName))         {            MessageBox.Show(this, String.Format("File not found: {0}", fileName), "Error", MessageBoxButtons.OK,                            MessageBoxIcon.Error);            return;         }         using (var bitmap = (Bitmap)Bitmap.FromFile(fileName))         {            if (TryOnlyMultipleQRCodes)               Decode(bitmap, TryMultipleBarcodes, new List<BarcodeFormat> { BarcodeFormat.QR_CODE });            else               Decode(bitmap, TryMultipleBarcodes, null);         }      }      private void Decode(Bitmap image, bool tryMultipleBarcodes, IList<BarcodeFormat> possibleFormats)      {         resultPoints.Clear();         lastResults.Clear();         txtContent.Text = String.Empty;         var timerStart = DateTime.Now.Ticks;         Result[] results = null;         barcodeReader.Options.PossibleFormats = possibleFormats;         if (tryMultipleBarcodes)            results = barcodeReader.DecodeMultiple(image);         else         {            var result = barcodeReader.Decode(image);            if (result != null)            {               results = new[] {result};            }         }         var timerStop = DateTime.Now.Ticks;         if (results == null)         {            txtContent.Text = "No barcode recognized";         }         labDuration.Text = new TimeSpan(timerStop - timerStart).Milliseconds.ToString("0 ms");         if (results != null)         {            foreach (var result in results)            {               if (result.ResultPoints.Length > 0)               {                  var rect = new Rectangle((int) result.ResultPoints[0].X, (int) result.ResultPoints[0].Y, 1, 1);                  foreach (var point in result.ResultPoints)                  {                     if (point.X < rect.Left)                        rect = new Rectangle((int) point.X, rect.Y, rect.Width + rect.X - (int) point.X, rect.Height);                     if (point.X > rect.Right)                        rect = new Rectangle(rect.X, rect.Y, rect.Width + (int) point.X - rect.X, rect.Height);                     if (point.Y < rect.Top)                        rect = new Rectangle(rect.X, (int) point.Y, rect.Width, rect.Height + rect.Y - (int) point.Y);                     if (point.Y > rect.Bottom)                        rect = new Rectangle(rect.X, rect.Y, rect.Width, rect.Height + (int) point.Y - rect.Y);                  }                  using (var g = picBarcode.CreateGraphics())                  {                     g.DrawRectangle(Pens.Green, rect);                  }               }            }         }      }

Encoder(二维码生成):

(待续)

WebCam(网络摄像头采样读码):

      private void btnDecodeWebCam_Click(object sender, EventArgs e)      {         if (wCam == null)         {            wCam = new WebCam {Container = picWebCam};            wCam.OpenConnection();            webCamTimer = new Timer();            webCamTimer.Tick += webCamTimer_Tick;            webCamTimer.Interval = 200; // Image derivation interval            webCamTimer.Start();            btnDecodeWebCam.Text = "Decoding..."; // Update UI         }         else         {            webCamTimer.Stop();            webCamTimer = null;            wCam.Dispose();            wCam = null;            btnDecodeWebCam.Text = "Decode"; // Update UI         }      }      void webCamTimer_Tick(object sender, EventArgs e)      {         var bitmap = wCam.GetCurrentImage(); // Derive a imaghe         if (bitmap == null)            return;         Console.WriteLine("Bitmap width is:{0}, height is{1}. Camera is: {2} mega-pixel.", bitmap.Width, bitmap.Height, bitmap.Width* bitmap.Height/10000);         var reader = new BarcodeReader();         var result = reader.Decode(bitmap); // Decode the image         if (result != null)         {            txtTypeWebCam.Text = result.BarcodeFormat.ToString();            txtContentWebCam.Text = result.Text;         }      }

其中WebCam对象定义的各类对摄像头的参数设置和操作详见WebCam.cs。

[源码工程分析]

1.图像解码(Qrcode为例)

Qrcode解码流程为检测定位->解码,涉及的几个主要文件为:BarcodeReader.cs(createBinarizer)->BarcodeReaderGeneric.cs(createBinarizer)->HybridBinarizer.cs(createBinarizer)、QRCodeReader.cs,Detector.cs和FinderPatternFinder.cs,Decoder.cs。

HybridBinarizer.cs(createBinarizer)类实现位图的二值化处理,核心代码段为:

      /// <summary>      /// Calculates the final BitMatrix once for all requests. This could be called once from the      /// constructor instead, but there are some advantages to doing it lazily, such as making      /// profiling easier, and not doing heavy lifting when callers don‘t expect it.      /// </summary>      private void binarizeEntireImage()      {         if (matrix == null)         {            LuminanceSource source = LuminanceSource;            int width = source.Width;            int height = source.Height;            if (width >= MINIMUM_DIMENSION && height >= MINIMUM_DIMENSION)            {               byte[] luminances = source.Matrix;               int subWidth = width >> BLOCK_SIZE_POWER;               if ((width & BLOCK_SIZE_MASK) != 0)               {                  subWidth++;               }               int subHeight = height >> BLOCK_SIZE_POWER;               if ((height & BLOCK_SIZE_MASK) != 0)               {                  subHeight++;               }               int[][] blackPoints = calculateBlackPoints(luminances, subWidth, subHeight, width, height);               var newMatrix = new BitMatrix(width, height);               calculateThresholdForBlock(luminances, subWidth, subHeight, width, height, blackPoints, newMatrix);               matrix = newMatrix;            }            else            {               // If the image is too small, fall back to the global histogram approach.               matrix = base.BlackMatrix;            }         }      }      /// <summary>      /// For each 8x8 block in the image, calculate the average black point using a 5x5 grid      /// of the blocks around it. Also handles the corner cases (fractional blocks are computed based      /// on the last 8 pixels in the row/column which are also used in the previous block).      /// PS(Jay):This algrithm has big issue!!! Should be enhanced!!!      /// </summary>      /// <param name="luminances">The luminances.</param>      /// <param name="subWidth">Width of the sub.</param>      /// <param name="subHeight">Height of the sub.</param>      /// <param name="width">The width.</param>      /// <param name="height">The height.</param>      /// <param name="blackPoints">The black points.</param>      /// <param name="matrix">The matrix.</param>      private static void calculateThresholdForBlock(byte[] luminances, int subWidth, int subHeight, int width, int height, int[][] blackPoints, BitMatrix matrix)      {         for (int y = 0; y < subHeight; y++)         {            int yoffset = y << BLOCK_SIZE_POWER;            int maxYOffset = height - BLOCK_SIZE;            if (yoffset > maxYOffset)            {               yoffset = maxYOffset;            }            for (int x = 0; x < subWidth; x++)            {               int xoffset = x << BLOCK_SIZE_POWER;               int maxXOffset = width - BLOCK_SIZE;               if (xoffset > maxXOffset)               {                  xoffset = maxXOffset;               }               int left = cap(x, 2, subWidth - 3);               int top = cap(y, 2, subHeight - 3);               int sum = 0;               for (int z = -2; z <= 2; z++)               {                  int[] blackRow = blackPoints[top + z];                  sum += blackRow[left - 2];                  sum += blackRow[left - 1];                  sum += blackRow[left];                  sum += blackRow[left + 1];                  sum += blackRow[left + 2];               }               int average = sum / 25;               thresholdBlock(luminances, xoffset, yoffset, average, width, matrix);            }         }      }      private static int cap(int value, int min, int max)      {         return value < min ? min : value > max ? max : value;      }      /// <summary>      /// Applies a single threshold to an 8x8 block of pixels.      /// </summary>      /// <param name="luminances">The luminances.</param>      /// <param name="xoffset">The xoffset.</param>      /// <param name="yoffset">The yoffset.</param>      /// <param name="threshold">The threshold.</param>      /// <param name="stride">The stride.</param>      /// <param name="matrix">The matrix.</param>      private static void thresholdBlock(byte[] luminances, int xoffset, int yoffset, int threshold, int stride, BitMatrix matrix)      {         int offset = (yoffset * stride) + xoffset;         for (int y = 0; y < BLOCK_SIZE; y++, offset += stride)         {            for (int x = 0; x < BLOCK_SIZE; x++)            {               int pixel = luminances[offset + x] & 0xff;               // Comparison needs to be <=, so that black == 0 pixels are black, even if the threshold is 0.               matrix[xoffset + x, yoffset + y] = (pixel <= threshold);            }         }      }      /// <summary>      /// Calculates a single black point for each 8x8 block of pixels and saves it away.      /// See the following thread for a discussion of this algorithm:      /// http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0      /// </summary>      /// <param name="luminances">The luminances.</param>      /// <param name="subWidth">Width of the sub.</param>      /// <param name="subHeight">Height of the sub.</param>      /// <param name="width">The width.</param>      /// <param name="height">The height.</param>      /// <returns></returns>      private static int[][] calculateBlackPoints(byte[] luminances, int subWidth, int subHeight, int width, int height)      {         int[][] blackPoints = new int[subHeight][];         for (int i = 0; i < subHeight; i++)         {            blackPoints[i] = new int[subWidth];         }         for (int y = 0; y < subHeight; y++)         {            int yoffset = y << BLOCK_SIZE_POWER;            int maxYOffset = height - BLOCK_SIZE;            if (yoffset > maxYOffset)            {               yoffset = maxYOffset;            }            for (int x = 0; x < subWidth; x++)            {               int xoffset = x << BLOCK_SIZE_POWER;               int maxXOffset = width - BLOCK_SIZE;               if (xoffset > maxXOffset)               {                  xoffset = maxXOffset;               }               int sum = 0;               int min = 0xFF;               int max = 0;               for (int yy = 0, offset = yoffset * width + xoffset; yy < BLOCK_SIZE; yy++, offset += width)               {                  for (int xx = 0; xx < BLOCK_SIZE; xx++)                  {                     int pixel = luminances[offset + xx] & 0xFF;                     // still looking for good contrast                     sum += pixel;                     if (pixel < min)                     {                        min = pixel;                     }                     if (pixel > max)                     {                        max = pixel;                     }                  }                  // short-circuit min/max tests once dynamic range is met                  if (max - min > MIN_DYNAMIC_RANGE)                  {                     // finish the rest of the rows quickly                     for (yy++, offset += width; yy < BLOCK_SIZE; yy++, offset += width)                     {                        for (int xx = 0; xx < BLOCK_SIZE; xx++)                        {                           sum += luminances[offset + xx] & 0xFF;                        }                     }                  }               }               // The default estimate is the average of the values in the block.               int average = sum >> (BLOCK_SIZE_POWER * 2);               if (max - min <= MIN_DYNAMIC_RANGE)               {                  // If variation within the block is low, assume this is a block with only light or only                  // dark pixels. In that case we do not want to use the average, as it would divide this                  // low contrast area into black and white pixels, essentially creating data out of noise.                  //                  // The default assumption is that the block is light/background. Since no estimate for                  // the level of dark pixels exists locally, use half the min for the block.                  average = min >> 1;                  if (y > 0 && x > 0)                  {                     // Correct the "white background" assumption for blocks that have neighbors by comparing                     // the pixels in this block to the previously calculated black points. This is based on                     // the fact that dark barcode symbology is always surrounded by some amount of light                     // background for which reasonable black point estimates were made. The bp estimated at                     // the boundaries is used for the interior.                     // The (min < bp) is arbitrary but works better than other heuristics that were tried.                     int averageNeighborBlackPoint = (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) +                         blackPoints[y - 1][x - 1]) >> 2;                     if (min < averageNeighborBlackPoint)                     {                        average = averageNeighborBlackPoint;                     }                  }               }               blackPoints[y][x] = average;            }         }         return blackPoints;      }

这一段算法有存在改进的必要。在HybridBinarizer继承的GlobalHistogramBinarizer类中,是从图像中均匀取5行(覆盖整个图像高度),每行取中间五分之四作为样本;以灰度值为X轴,每个灰度值的像素个数为Y轴建立一个直方图,从直方图中取点数最多的一个灰度值,然后再去给其他的灰度值进行分数计算,按照点数乘以与最多点数灰度值的距离的平方来进行打分,选分数最高的一个灰度值。接下来在这两个灰度值中间选取一个区分界限,取的原则是尽量靠近中间并且要点数越少越好。界限有了以后就容易了,与整幅图像的每个点进行比较,如果灰度值比界限小的就是黑,在新的矩阵中将该点置1,其余的就是白,为0。此部分具体代码见GlobalHistogramBinarizer类的BlackMatrix()重写方法。这个算法的劣势是由于是全局计算阈值点,所以应对局部阴影不太理想(However, because it picks a global black point, it cannot handle difficult shadows and gradients.)。

 

QRCodeReader类实现了接口Reader,核心段代码为:

      /// <summary>      /// Locates and decodes a barcode in some format within an image. This method also accepts      /// hints, each possibly associated to some data, which may help the implementation decode.      /// </summary>      /// <param name="image">image of barcode to decode</param>      /// <param name="hints">passed as a <see cref="IDictionary{TKey, TValue}"/> from <see cref="DecodeHintType"/>      /// to arbitrary data. The      /// meaning of the data depends upon the hint type. The implementation may or may not do      /// anything with these hints.</param>      /// <returns>      /// String which the barcode encodes      /// </returns>      public Result decode(BinaryBitmap image, IDictionary<DecodeHintType, object> hints)      {         DecoderResult decoderResult;         ResultPoint[] points;         if (image == null || image.BlackMatrix == null)         {            // something is wrong with the image            return null;         }         if (hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE)) // 纯barcode图片         {            var bits = extractPureBits(image.BlackMatrix);            if (bits == null)               return null;            decoderResult = decoder.decode(bits, hints);            points = NO_POINTS;         }         else         {            var detectorResult = new Detector(image.BlackMatrix).detect(hints); // 检测barcode            if (detectorResult == null)               return null;            decoderResult = decoder.decode(detectorResult.Bits, hints); // 解码barcode            points = detectorResult.Points;         }         if (decoderResult == null)            return null;         // If the code was mirrored: swap the bottom-left and the top-right points.         var data = http://www.mamicode.com/decoderResult.Other as QRCodeDecoderMetaData;         if (data != null)         {            data.applyMirroredCorrection(points);         }         var result = new Result(decoderResult.Text, decoderResult.RawBytes, points, BarcodeFormat.QR_CODE);         var byteSegments = decoderResult.ByteSegments;         if (byteSegments != null)         {            result.putMetadata(ResultMetadataType.BYTE_SEGMENTS, byteSegments);         }         var ecLevel = decoderResult.ECLevel;         if (ecLevel != null)         {            result.putMetadata(ResultMetadataType.ERROR_CORRECTION_LEVEL, ecLevel);         }         if (decoderResult.StructuredAppend)         {            result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_SEQUENCE, decoderResult.StructuredAppendSequenceNumber);            result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_PARITY, decoderResult.StructuredAppendParity);         }         return result;      }

 

qrcode->detector目录下的Detector类:

namespace ZXing.QrCode.Internal{   /// <summary>   /// <p>Encapsulates logic that can detect a QR Code in an image, even if the QR Code   /// is rotated or skewed, or partially obscured.</p>   /// </summary>   /// <author>Sean Owen</author>   public class Detector   {      private readonly BitMatrix image;      private ResultPointCallback resultPointCallback;      /// <summary>      /// Initializes a new instance of the <see cref="Detector"/> class.      /// </summary>      /// <param name="image">The image.</param>      public Detector(BitMatrix image)      {         this.image = image;      }      /// <summary>      /// Gets the image.      /// </summary>      virtual protected internal BitMatrix Image      {         get         {            return image;         }      }      /// <summary>      /// Gets the result point callback.      /// </summary>      virtual protected internal ResultPointCallback ResultPointCallback      {         get         {            return resultPointCallback;         }      }      /// <summary>      ///   <p>Detects a QR Code in an image, simply.</p>      /// </summary>      /// <returns>      ///   <see cref="DetectorResult"/> encapsulating results of detecting a QR Code      /// </returns>      public virtual DetectorResult detect()      {         return detect(null);      }      /// <summary>      ///   <p>Detects a QR Code in an image, simply.</p>      /// </summary>      /// <param name="hints">optional hints to detector</param>      /// <returns>      ///   <see cref="DetectorResult"/> encapsulating results of detecting a QR Code      /// </returns>      public virtual DetectorResult detect(IDictionary<DecodeHintType, object> hints)      {         resultPointCallback = hints == null || !hints.ContainsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK) ? null : (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK];         FinderPatternFinder finder = new FinderPatternFinder(image, resultPointCallback);         FinderPatternInfo info = finder.find(hints);         if (info == null)            return null;         return processFinderPatternInfo(info);      }      /// <summary>      /// Processes the finder pattern info.      /// </summary>      /// <param name="info">The info.</param>      /// <returns></returns>      protected internal virtual DetectorResult processFinderPatternInfo(FinderPatternInfo info)      {         FinderPattern topLeft = info.TopLeft;         FinderPattern topRight = info.TopRight;         FinderPattern bottomLeft = info.BottomLeft;         float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft);         if (moduleSize < 1.0f)         {            return null;         }         int dimension;         if (!computeDimension(topLeft, topRight, bottomLeft, moduleSize, out dimension))            return null;         Internal.Version provisionalVersion = Internal.Version.getProvisionalVersionForDimension(dimension);         if (provisionalVersion == null)            return null;         int modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7;         AlignmentPattern alignmentPattern = null;         // Anything above version 1 has an alignment pattern         if (provisionalVersion.AlignmentPatternCenters.Length > 0)         {            // Guess where a "bottom right" finder pattern would have been            float bottomRightX = topRight.X - topLeft.X + bottomLeft.X;            float bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y;            // Estimate that alignment pattern is closer by 3 modules            // from "bottom right" to known top left location            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            float correctionToTopLeft = 1.0f - 3.0f / (float)modulesBetweenFPCenters;            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            int estAlignmentX = (int)(topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X));            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            int estAlignmentY = (int)(topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y));            // Kind of arbitrary -- expand search radius before giving up            for (int i = 4; i <= 16; i <<= 1)            {               alignmentPattern = findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, (float)i);               if (alignmentPattern == null)                  continue;               break;            }            // If we didn‘t find alignment pattern... well try anyway without it         }         PerspectiveTransform transform = createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension);         BitMatrix bits = sampleGrid(image, transform, dimension);         if (bits == null)            return null;         ResultPoint[] points;         if (alignmentPattern == null)         {            points = new ResultPoint[] { bottomLeft, topLeft, topRight };         }         else         {            points = new ResultPoint[] { bottomLeft, topLeft, topRight, alignmentPattern };         }         return new DetectorResult(bits, points);      }      private static PerspectiveTransform createTransform(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint alignmentPattern, int dimension)      {         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         float dimMinusThree = (float)dimension - 3.5f;         float bottomRightX;         float bottomRightY;         float sourceBottomRightX;         float sourceBottomRightY;         if (alignmentPattern != null)         {            bottomRightX = alignmentPattern.X;            bottomRightY = alignmentPattern.Y;            sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f;         }         else         {            // Don‘t have an alignment pattern, just make up the bottom-right point            bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X;            bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y;            sourceBottomRightX = sourceBottomRightY = dimMinusThree;         }         return PerspectiveTransform.quadrilateralToQuadrilateral(            3.5f,            3.5f,            dimMinusThree,            3.5f,            sourceBottomRightX,            sourceBottomRightY,            3.5f,            dimMinusThree,            topLeft.X,            topLeft.Y,            topRight.X,            topRight.Y,            bottomRightX,            bottomRightY,            bottomLeft.X,            bottomLeft.Y);      }      private static BitMatrix sampleGrid(BitMatrix image, PerspectiveTransform transform, int dimension)      {         GridSampler sampler = GridSampler.Instance;         return sampler.sampleGrid(image, dimension, dimension, transform);      }      /// <summary> <p>Computes the dimension (number of modules on a size) of the QR Code based on the position      /// of the finder patterns and estimated module size.</p>      /// </summary>      private static bool computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, float moduleSize, out int dimension)      {         int tltrCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, topRight) / moduleSize);         int tlblCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, bottomLeft) / moduleSize);         dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7;         switch (dimension & 0x03)         {            // mod 4            case 0:               dimension++;               break;            // 1? do nothing            case 2:               dimension--;               break;            case 3:               return true;         }         return true;      }      /// <summary> <p>Computes an average estimated module size based on estimated derived from the positions      /// of the three finder patterns.</p>      /// </summary>      protected internal virtual float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft)      {         // Take the average         return (calculateModuleSizeOneWay(topLeft, topRight) + calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f;      }      /// <summary> <p>Estimates module size based on two finder patterns -- it uses      /// {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the      /// width of each, measuring along the axis between their centers.</p>      /// </summary>      private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern)      {         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int)pattern.X, (int)pattern.Y, (int)otherPattern.X, (int)otherPattern.Y);         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int)otherPattern.X, (int)otherPattern.Y, (int)pattern.X, (int)pattern.Y);         if (Single.IsNaN(moduleSizeEst1))         {            return moduleSizeEst2 / 7.0f;         }         if (Single.IsNaN(moduleSizeEst2))         {            return moduleSizeEst1 / 7.0f;         }         // Average them, and divide by 7 since we‘ve counted the width of 3 black modules,         // and 1 white and 1 black module on either side. Ergo, divide sum by 14.         return (moduleSizeEst1 + moduleSizeEst2) / 14.0f;      }      /// <summary> See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of      /// a finder pattern by looking for a black-white-black run from the center in the direction      /// of another point (another finder pattern center), and in the opposite direction too.      /// </summary>      private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY)      {         float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);         // Now count other way -- don‘t run off image though of course         float scale = 1.0f;         int otherToX = fromX - (toX - fromX);         if (otherToX < 0)         {            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            scale = (float)fromX / (float)(fromX - otherToX);            otherToX = 0;         }         else if (otherToX >= image.Width)         {            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            scale = (float)(image.Width - 1 - fromX) / (float)(otherToX - fromX);            otherToX = image.Width - 1;         }         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         int otherToY = (int)(fromY - (toY - fromY) * scale);         scale = 1.0f;         if (otherToY < 0)         {            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            scale = (float)fromY / (float)(fromY - otherToY);            otherToY = 0;         }         else if (otherToY >= image.Height)         {            //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"            scale = (float)(image.Height - 1 - fromY) / (float)(otherToY - fromY);            otherToY = image.Height - 1;         }         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         otherToX = (int)(fromX + (otherToX - fromX) * scale);         result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY);         return result - 1.0f; // -1 because we counted the middle pixel twice      }      /// <summary> <p>This method traces a line from a point in the image, in the direction towards another point.      /// It begins in a black region, and keeps going until it finds white, then black, then white again.      /// It reports the distance from the start to this point.</p>      ///       /// <p>This is used when figuring out how wide a finder pattern is, when the finder pattern      /// may be skewed or rotated.</p>      /// </summary>      private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY)      {         // Mild variant of Bresenham‘s algorithm;         // see http://en.wikipedia.org/wiki/Bresenham‘s_line_algorithm         bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX);         if (steep)         {            int temp = fromX;            fromX = fromY;            fromY = temp;            temp = toX;            toX = toY;            toY = temp;         }         int dx = Math.Abs(toX - fromX);         int dy = Math.Abs(toY - fromY);         int error = -dx >> 1;         int xstep = fromX < toX ? 1 : -1;         int ystep = fromY < toY ? 1 : -1;         // In black pixels, looking for white, first or second time.         int state = 0;         // Loop up until x == toX, but not beyond         int xLimit = toX + xstep;         for (int x = fromX, y = fromY; x != xLimit; x += xstep)         {            int realX = steep ? y : x;            int realY = steep ? x : y;            // Does current pixel mean we have moved white to black or vice versa?            // Scanning black in state 0,2 and white in state 1, so if we find the wrong            // color, advance to next state or end if we are in state 2 already            if ((state == 1) == image[realX, realY])            {               if (state == 2)               {                  return MathUtils.distance(x, y, fromX, fromY);               }               state++;            }            error += dy;            if (error > 0)            {               if (y == toY)               {                  break;               }               y += ystep;               error -= dx;            }         }         // Found black-white-black; give the benefit of the doubt that the next pixel outside the image         // is "white" so this last point at (toX+xStep,toY) is the right ending. This is really a         // small approximation; (toX+xStep,toY+yStep) might be really correct. Ignore this.         if (state == 2)         {            return MathUtils.distance(toX + xstep, toY, fromX, fromY);         }         // else we didn‘t find even black-white-black; no estimate is really possible         return Single.NaN;      }      /// <summary>      ///   <p>Attempts to locate an alignment pattern in a limited region of the image, which is      /// guessed to contain it. This method uses {@link AlignmentPattern}.</p>      /// </summary>      /// <param name="overallEstModuleSize">estimated module size so far</param>      /// <param name="estAlignmentX">x coordinate of center of area probably containing alignment pattern</param>      /// <param name="estAlignmentY">y coordinate of above</param>      /// <param name="allowanceFactor">number of pixels in all directions to search from the center</param>      /// <returns>      ///   <see cref="AlignmentPattern"/> if found, or null otherwise      /// </returns>      protected AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor)      {         // Look for an alignment pattern (3 modules in size) around where it         // should be         //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"         int allowance = (int)(allowanceFactor * overallEstModuleSize);         int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance);         int alignmentAreaRightX = Math.Min(image.Width - 1, estAlignmentX + allowance);         if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3)         {            return null;         }         int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance);         int alignmentAreaBottomY = Math.Min(image.Height - 1, estAlignmentY + allowance);         var alignmentFinder = new AlignmentPatternFinder(            image,            alignmentAreaLeftX,            alignmentAreaTopY,            alignmentAreaRightX - alignmentAreaLeftX,            alignmentAreaBottomY - alignmentAreaTopY,            overallEstModuleSize,            resultPointCallback);         return alignmentFinder.find();      }   }}

 

qrcode->detector目录下的FinderPatternFinder类:

技术分享
/** Copyright 2007 ZXing authors** Licensed under the Apache License, Version 2.0 (the "License");* you may not use this file except in compliance with the License.* You may obtain a copy of the License at**      http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/using System;using System.Collections.Generic;using ZXing.Common;namespace ZXing.QrCode.Internal{   /// <summary>   /// <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square   /// markers at three corners of a QR Code.</p>   ///    /// <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.   /// </summary>   /// <author>Sean Owen</author>   public class FinderPatternFinder   {      private const int CENTER_QUORUM = 2;      /// <summary>      /// 1 pixel/module times 3 modules/center      /// </summary>      protected internal const int MIN_SKIP = 3;       /// <summary>      /// support up to version 10 for mobile clients      /// </summary>      protected internal const int MAX_MODULES = 57;      private const int INTEGER_MATH_SHIFT = 8;      private readonly BitMatrix image;      private List<FinderPattern> possibleCenters; // Records the alignment patterns cordination information      private bool hasSkipped;      private readonly int[] crossCheckStateCount;      private readonly ResultPointCallback resultPointCallback;      /// <summary>      /// <p>Creates a finder that will search the image for three finder patterns.</p>      /// </summary>      /// <param name="image">image to search</param>      public FinderPatternFinder(BitMatrix image)         : this(image, null)      {      }      /// <summary>      /// Initializes a new instance of the <see cref="FinderPatternFinder"/> class.      /// </summary>      /// <param name="image">The image.</param>      /// <param name="resultPointCallback">The result point callback.</param>      public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback)      {         this.image = image;         this.possibleCenters = new List<FinderPattern>();         this.crossCheckStateCount = new int[5];         this.resultPointCallback = resultPointCallback;      }      /// <summary>      /// Gets the image.      /// </summary>      virtual protected internal BitMatrix Image      {         get         {            return image;         }      }      /// <summary>      /// Gets the possible centers.      /// </summary>      virtual protected internal List<FinderPattern> PossibleCenters      {         get         {            return possibleCenters;         }      }      internal virtual FinderPatternInfo find(IDictionary<DecodeHintType, object> hints)      {         bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER);         bool pureBarcode = hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE);         int maxI = image.Height;         int maxJ = image.Width;         // We are looking for black/white/black/white/black modules in         // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far         // Let‘s assume that the maximum version QR Code we support takes up 1/4 the height of the         // image, and then account for the center being 3 modules in size. This gives the smallest         // number of pixels the center could be, so skip this often. When trying harder, look for all         // QR versions regardless of how dense they are.         int iSkip = (3 * maxI) / (4 * MAX_MODULES);         if (iSkip < MIN_SKIP || tryHarder)         {            iSkip = MIN_SKIP;         }         bool done = false;         int[] stateCount = new int[5];         for (int i = iSkip - 1; i < maxI && !done; i += iSkip)         {            // Get a row of black/white values            stateCount[0] = 0;            stateCount[1] = 0;            stateCount[2] = 0;            stateCount[3] = 0;            stateCount[4] = 0;            int currentState = 0;            for (int j = 0; j < maxJ; j++)            {               if (image[j, i])               {                  // Black pixel                  if ((currentState & 1) == 1)                  {                     // Counting white pixels                     currentState++;                  }                  stateCount[currentState]++;               }               else               {                  // White pixel                  if ((currentState & 1) == 0)                  {                     // Counting black pixels                     if (currentState == 4)                     {                        // A winner?                        if (foundPatternCross(stateCount))                        {                           // Yes(possible alignment pattern was found)                           bool confirmed = handlePossibleCenter(stateCount, i, j, pureBarcode); // Check whether the alignment pattern is true or fake                           if (confirmed)                           {                              // Start examining every other line. Checking each line turned out to be too                              // expensive and didn‘t improve performance.                              iSkip = 2;                              if (hasSkipped) // If at least two alignment patterns were found and the skip parameter has been calculated                              {                                 done = haveMultiplyConfirmedCenters(); // Check whether we have found at least 3 finder patterns                              }                              else                              {                                 int rowSkip = findRowSkip(); // Calculate number of rows we could safely skip during scanning, based on the first two finder patterns                                 if (rowSkip > stateCount[2])                                 {                                    // Skip rows between row of lower confirmed center and top of presumed third confirmed center                                    // but back up a bit to get a full chance of detecting it, entire width of center of finder pattern                                    // Skip by rowSkip, but back off by stateCount[2] (size of last center of pattern we saw)                                     // to be conservative, and also back off by iSkip which is about to be re-added                                    i += rowSkip - stateCount[2] - iSkip;                                    j = maxJ - 1;                                 }                              }                           }                           else                           {                              stateCount[0] = stateCount[2];                              stateCount[1] = stateCount[3];                              stateCount[2] = stateCount[4];                              stateCount[3] = 1;                              stateCount[4] = 0;                              currentState = 3;                              continue;                           }                           // Clear state to start looking again                           currentState = 0;                           stateCount[0] = 0;                           stateCount[1] = 0;                           stateCount[2] = 0;                           stateCount[3] = 0;                           stateCount[4] = 0;                        }                        else                        {                           // No, shift counts back by two                           stateCount[0] = stateCount[2];                           stateCount[1] = stateCount[3];                           stateCount[2] = stateCount[4];                           stateCount[3] = 1;                           stateCount[4] = 0;                           currentState = 3;                        }                     }                     else                     {                        stateCount[++currentState]++;                     }                  }                  else                  {                     // Counting white pixels                     stateCount[currentState]++;                  }               }            }            if (foundPatternCross(stateCount))            {               bool confirmed = handlePossibleCenter(stateCount, i, maxJ, pureBarcode);               if (confirmed)               {                  iSkip = stateCount[0];                  if (hasSkipped)                  {                     // Found a third one                     done = haveMultiplyConfirmedCenters();                  }               }            }         }         FinderPattern[] patternInfo = selectBestPatterns();         if (patternInfo == null)            return null;         ResultPoint.orderBestPatterns(patternInfo);         return new FinderPatternInfo(patternInfo);      }      /// <summary> Given a count of black/white/black/white/black pixels just seen and an end position,      /// figures the location of the center of this run.      /// </summary>      private static float? centerFromEnd(int[] stateCount, int end)      {         var result = (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;         if (Single.IsNaN(result))            return null;         return result;      }      /// <param name="stateCount">count of black/white/black/white/black pixels just read      /// </param>      /// <returns> true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios      /// used by finder patterns to be considered a match      /// </returns>      protected internal static bool foundPatternCross(int[] stateCount)      {         int totalModuleSize = 0;         for (int i = 0; i < 5; i++)         {            int count = stateCount[i];            if (count == 0)            {               return false;            }            totalModuleSize += count;         }         if (totalModuleSize < 7)         {            return false;         }         int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7; // 1+1+3+1+1=7, at least 7 modules         int maxVariance = moduleSize / 2;         // Allow less than 50% variance from 1-1-3-1-1 proportions         return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance &&             Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance &&             Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance &&             Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance &&             Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance;      }      private int[] CrossCheckStateCount      {         get         {            crossCheckStateCount[0] = 0;            crossCheckStateCount[1] = 0;            crossCheckStateCount[2] = 0;            crossCheckStateCount[3] = 0;            crossCheckStateCount[4] = 0;            return crossCheckStateCount;         }      }      /// <summary>      /// After a vertical and horizontal scan finds a potential finder pattern, this method      /// "cross-cross-cross-checks" by scanning down diagonally through the center of the possible      /// finder pattern to see if the same proportion is detected.      /// </summary>      /// <param name="startI">row where a finder pattern was detected</param>      /// <param name="centerJ">center of the section that appears to cross a finder pattern</param>      /// <param name="maxCount">maximum reasonable number of modules that should be observed in any reading state, based on the results of the horizontal scan</param>      /// <param name="originalStateCountTotal">The original state count total.</param>      /// <returns>true if proportions are withing expected limits</returns>      private bool crossCheckDiagonal(int startI, int centerJ, int maxCount, int originalStateCountTotal)      {         int maxI = image.Height;         int maxJ = image.Width;         int[] stateCount = CrossCheckStateCount;         // Start counting up, left from center finding black center mass         int i = 0;         while (startI - i >= 0 && image[centerJ - i, startI - i])         {            stateCount[2]++;            i++;         }         if ((startI - i < 0) || (centerJ - i < 0))         {            return false;         }         // Continue up, left finding white space         while ((startI - i >= 0) && (centerJ - i >= 0) && !image[centerJ - i, startI - i] && stateCount[1] <= maxCount)         {            stateCount[1]++;            i++;         }         // If already too many modules in this state or ran off the edge:         if ((startI - i < 0) || (centerJ - i < 0) || stateCount[1] > maxCount)         {            return false;         }         // Continue up, left finding black border         while ((startI - i >= 0) && (centerJ - i >= 0) && image[centerJ - i, startI - i] && stateCount[0] <= maxCount)         {            stateCount[0]++;            i++;         }         if (stateCount[0] > maxCount)         {            return false;         }         // Now also count down, right from center         i = 1;         while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i])         {            stateCount[2]++;            i++;         }         // Ran off the edge?         if ((startI + i >= maxI) || (centerJ + i >= maxJ))         {            return false;         }         while ((startI + i < maxI) && (centerJ + i < maxJ) && !image[centerJ + i, startI + i] && stateCount[3] < maxCount)         {            stateCount[3]++;            i++;         }         if ((startI + i >= maxI) || (centerJ + i >= maxJ) || stateCount[3] >= maxCount)         {            return false;         }         while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i] && stateCount[4] < maxCount)         {            stateCount[4]++;            i++;         }         if (stateCount[4] >= maxCount)         {            return false;         }         // If we found a finder-pattern-like section, but its size is more than 100% different than         // the original, assume it‘s a false positive         int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];         return Math.Abs(stateCountTotal - originalStateCountTotal) < 2*originalStateCountTotal &&                foundPatternCross(stateCount);      }      /// <summary>      ///   <p>After a horizontal scan finds a potential finder pattern, this method      /// "cross-checks" by scanning down vertically through the center of the possible      /// finder pattern to see if the same proportion is detected.</p>      /// </summary>      /// <param name="startI">row where a finder pattern was detected</param>      /// <param name="centerJ">center of the section that appears to cross a finder pattern</param>      /// <param name="maxCount">maximum reasonable number of modules that should be      /// observed in any reading state, based on the results of the horizontal scan</param>      /// <param name="originalStateCountTotal">The original state count total.</param>      /// <returns>      /// vertical center of finder pattern, or null if not found      /// </returns>      private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal)      {         int maxI = image.Height;         int[] stateCount = CrossCheckStateCount;         // Start counting up from center         int i = startI;         while (i >= 0 && image[centerJ, i])         {            stateCount[2]++;            i--;         }         if (i < 0)         {            return null;         }         while (i >= 0 && !image[centerJ, i] && stateCount[1] <= maxCount)         {            stateCount[1]++;            i--;         }         // If already too many modules in this state or ran off the edge:         if (i < 0 || stateCount[1] > maxCount)         {            return null;         }         while (i >= 0 && image[centerJ, i] && stateCount[0] <= maxCount)         {            stateCount[0]++;            i--;         }         if (stateCount[0] > maxCount)         {            return null;         }         // Now also count down from center         i = startI + 1;         while (i < maxI && image[centerJ, i])         {            stateCount[2]++;            i++;         }         if (i == maxI)         {            return null;         }         while (i < maxI && !image[centerJ, i] && stateCount[3] < maxCount)         {            stateCount[3]++;            i++;         }         if (i == maxI || stateCount[3] >= maxCount)         {            return null;         }         while (i < maxI && image[centerJ, i] && stateCount[4] < maxCount)         {            stateCount[4]++;            i++;         }         if (stateCount[4] >= maxCount)         {            return null;         }         // If we found a finder-pattern-like section, but its size is more than 40% different than         // the original, assume it‘s a false positive         int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];         if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal)         {            return null;         }         return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null;      }      /// <summary> <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,      /// except it reads horizontally instead of vertically. This is used to cross-cross      /// check a vertical cross check and locate the real center of the alignment pattern.</p>      /// </summary>      private float? crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal)      {         int maxJ = image.Width;         int[] stateCount = CrossCheckStateCount;         int j = startJ;         while (j >= 0 && image[j, centerI])         {            stateCount[2]++;            j--;         }         if (j < 0)         {            return null;         }         while (j >= 0 && !image[j, centerI] && stateCount[1] <= maxCount)         {            stateCount[1]++;            j--;         }         if (j < 0 || stateCount[1] > maxCount)         {            return null;         }         while (j >= 0 && image[j, centerI] && stateCount[0] <= maxCount)         {            stateCount[0]++;            j--;         }         if (stateCount[0] > maxCount)         {            return null;         }         j = startJ + 1;         while (j < maxJ && image[j, centerI])         {            stateCount[2]++;            j++;         }         if (j == maxJ)         {            return null;         }         while (j < maxJ && !image[j, centerI] && stateCount[3] < maxCount)         {            stateCount[3]++;            j++;         }         if (j == maxJ || stateCount[3] >= maxCount)         {            return null;         }         while (j < maxJ && image[j, centerI] && stateCount[4] < maxCount)         {            stateCount[4]++;            j++;         }         if (stateCount[4] >= maxCount)         {            return null;         }         // If we found a finder-pattern-like section, but its size is significantly different than         // the original, assume it‘s a false positive         int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];         if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal)         {            return null;         }         return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : null;      }      /// <summary>      ///   <p>This is called when a horizontal scan finds a possible alignment pattern. It will      /// cross check with a vertical scan, and if successful, will, ah, cross-cross-check      /// with another horizontal scan. This is needed primarily to locate the real horizontal      /// center of the pattern in cases of extreme skew.      /// And then we cross-cross-cross check with another diagonal scan.</p>      /// If that succeeds the finder pattern location is added to a list that tracks      /// the number of times each location has been nearly-matched as a finder pattern.      /// Each additional find is more evidence that the location is in fact a finder      /// pattern center      /// </summary>      /// <param name="stateCount">reading state module counts from horizontal scan</param>      /// <param name="i">row where finder pattern may be found</param>      /// <param name="j">end of possible finder pattern in row</param>      /// <param name="pureBarcode">if set to <c>true</c> [pure barcode].</param>      /// <returns>      /// true if a finder pattern candidate was found this time      /// </returns>      protected bool handlePossibleCenter(int[] stateCount, int i, int j, bool pureBarcode)      {         int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];         float? centerJ = centerFromEnd(stateCount, j);         if (centerJ == null)            return false;         float? centerI = crossCheckVertical(i, (int)centerJ.Value, stateCount[2], stateCountTotal); // Cross Check Vertical            if (centerI != null)         {            // Re-cross check            centerJ = crossCheckHorizontal((int)centerJ.Value, (int)centerI.Value, stateCount[2], stateCountTotal); // Cross Check Horizontal                if (centerJ != null &&               (!pureBarcode || crossCheckDiagonal((int) centerI, (int) centerJ, stateCount[2], stateCountTotal))) // Cross Check Diagonal                {               float estimatedModuleSize = stateCountTotal / 7.0f;               bool found = false;               for (int index = 0; index < possibleCenters.Count; index++)               {                  var center = possibleCenters[index];                  // Look for about the same center and module size:                  if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value))                  {                     possibleCenters.RemoveAt(index);                     possibleCenters.Insert(index, center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize));                     found = true;                     break;                  }               }               if (!found)               {                  var point = new FinderPattern(centerJ.Value, centerI.Value, estimatedModuleSize);                  possibleCenters.Add(point);                  if (resultPointCallback != null)                  {                     resultPointCallback(point);                  }               }               return true;            }         }         return false;      }      /// <returns> number of rows we could safely skip during scanning, based on the first      /// two finder patterns that have been located. In some cases their position will      /// allow us to infer that the third pattern must lie below a certain point farther      /// down in the image.      /// </returns>      private int findRowSkip()      {         int max = possibleCenters.Count;         if (max <= 1)         {            return 0;         }         ResultPoint firstConfirmedCenter = null;         foreach (var center in possibleCenters)         {            if (center.Count >= CENTER_QUORUM)            {               if (firstConfirmedCenter == null)               {                  firstConfirmedCenter = center;               }               else               {                  // We have two confirmed centers                  // How far down can we skip before resuming looking for the next                  // pattern? In the worst case, only the difference between the                  // difference in the x / y coordinates of the two centers.                  // This is the case where you find top left last.                  hasSkipped = true;                  //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘"                  return (int)(Math.Abs(firstConfirmedCenter.X - center.X) - Math.Abs(firstConfirmedCenter.Y - center.Y)) / 2;               }            }         }         return 0;      }      /// <returns> true if we have found at least 3 finder patterns that have been detected      /// at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the      /// candidates is "pretty similar"      /// </returns>      private bool haveMultiplyConfirmedCenters()      {         int confirmedCount = 0;         float totalModuleSize = 0.0f;         int max = possibleCenters.Count;         foreach (var pattern in possibleCenters)         {            if (pattern.Count >= CENTER_QUORUM)            {               confirmedCount++;               totalModuleSize += pattern.EstimatedModuleSize;            }         }         if (confirmedCount < 3)         {            return false;         }         // OK, we have at least 3 confirmed centers, but, it‘s possible that one is a "false positive"         // and that we need to keep looking. We detect this by asking if the estimated module sizes         // vary too much. We arbitrarily say that when the total deviation from average exceeds         // 5% of the total module size estimates, it‘s too much.         float average = totalModuleSize / max;         float totalDeviation = 0.0f;         for (int i = 0; i < max; i++)         {            var pattern = possibleCenters[i];            totalDeviation += Math.Abs(pattern.EstimatedModuleSize - average);         }         return totalDeviation <= 0.05f * totalModuleSize;      }      /// <returns> the 3 best {@link FinderPattern}s from our list of candidates. The "best" are      /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module      /// size differs from the average among those patterns the least      /// </returns>      private FinderPattern[] selectBestPatterns()      {         int startSize = possibleCenters.Count;         if (startSize < 3)         {            // Couldn‘t find enough finder patterns            return null;         }         // Filter outlier possibilities whose module size is too different         if (startSize > 3)         {            // But we can only afford to do so if we have at least 4 possibilities to choose from            float totalModuleSize = 0.0f;            float square = 0.0f;            foreach (var center in possibleCenters)            {               float size = center.EstimatedModuleSize;               totalModuleSize += size;               square += size * size;            }            float average = totalModuleSize / startSize;            float stdDev = (float)Math.Sqrt(square / startSize - average * average);            possibleCenters.Sort(new FurthestFromAverageComparator(average));            float limit = Math.Max(0.2f * average, stdDev);            for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++)            {               FinderPattern pattern = possibleCenters[i];               if (Math.Abs(pattern.EstimatedModuleSize - average) > limit)               {                  possibleCenters.RemoveAt(i);                  i--;               }            }         }         if (possibleCenters.Count > 3)         {            // Throw away all but those first size candidate points we found.            float totalModuleSize = 0.0f;            foreach (var possibleCenter in possibleCenters)            {               totalModuleSize += possibleCenter.EstimatedModuleSize;            }            float average = totalModuleSize / possibleCenters.Count;            possibleCenters.Sort(new CenterComparator(average));            //possibleCenters.subList(3, possibleCenters.Count).clear();            possibleCenters = possibleCenters.GetRange(0, 3);         }         return new[]                   {                      possibleCenters[0],                      possibleCenters[1],                      possibleCenters[2]                   };      }      /// <summary>      /// Orders by furthest from average      /// </summary>      private sealed class FurthestFromAverageComparator : IComparer<FinderPattern>      {         private readonly float average;         public FurthestFromAverageComparator(float f)         {            average = f;         }         public int Compare(FinderPattern x, FinderPattern y)         {            float dA = Math.Abs(y.EstimatedModuleSize - average);            float dB = Math.Abs(x.EstimatedModuleSize - average);            return dA < dB ? -1 : dA == dB ? 0 : 1;         }      }      /// <summary> <p>Orders by {@link FinderPattern#getCount()}, descending.</p></summary>      private sealed class CenterComparator : IComparer<FinderPattern>      {         private readonly float average;         public CenterComparator(float f)         {            average = f;         }         public int Compare(FinderPattern x, FinderPattern y)         {            if (y.Count == x.Count)            {               float dA = Math.Abs(y.EstimatedModuleSize - average);               float dB = Math.Abs(x.EstimatedModuleSize - average);               return dA < dB ? 1 : dA == dB ? 0 : -1;            }            return y.Count - x.Count;         }      }   }}
View Code

寻找PatternFinder流程为:先按照1:1:3:1:1的比例逐行扫描,寻找Qrcode的定位点并校验点位点(横向,竖向,对角线斜向),找到最初两个定位点以后,

通过findRowSkip()更新隔行检测参数提高检测效率,继续寻找定位点直至定位点全部找到,然后通过selectBestPatterns()选择最优的定位点,然后将最优

定位点相关信息处理后返回供上层调用。

 

qrcode->decoder目录下的Decoder(密封)类:

 

2.源码架构

BarcodeReader类继承了BarcodeReaderGeneric类,实现了接口IBarcodeReader, IMultipleBarcodeReader:

public class BarcodeReader : BarcodeReaderGeneric<Bitmap>, IBarcodeReader, IMultipleBarcodeReader

BarcodeReaderGeneric类实现了接口IBarcodeReaderGeneric<T>, IMultipleBarcodeReaderGeneric<T>。其中Decode虚拟方法为:

      /// <summary>      /// Tries to decode a barcode within an image which is given by a luminance source.      /// That method gives a chance to prepare a luminance source completely before calling      /// the time consuming decoding method. On the other hand there is a chance to create      /// a luminance source which is independent from external resources (like Bitmap objects)      /// and the decoding call can be made in a background thread.      /// </summary>      /// <param name="luminanceSource">The luminance source.</param>      /// <returns></returns>      virtual public Result Decode(LuminanceSource luminanceSource)      {         var result = default(Result);         var binarizer = CreateBinarizer(luminanceSource);         var binaryBitmap = new BinaryBitmap(binarizer);         var multiformatReader = Reader as MultiFormatReader;         var rotationCount = 0;         var rotationMaxCount = 1;         if (AutoRotate)         {            Options.Hints[DecodeHintType.TRY_HARDER_WITHOUT_ROTATION] = true;            rotationMaxCount = 4;         }         else         {            if (Options.Hints.ContainsKey(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION))               Options.Hints.Remove(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION);         }         for (; rotationCount < rotationMaxCount; rotationCount++)         {            if (usePreviousState && multiformatReader != null)            {               result = multiformatReader.decodeWithState(binaryBitmap);            }            else            {               result = Reader.decode(binaryBitmap, Options.Hints);               usePreviousState = true;            }            if (result == null)            {               if (TryInverted && luminanceSource.InversionSupported)               {                  binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.invert()));                  if (usePreviousState && multiformatReader != null)                  {                     result = multiformatReader.decodeWithState(binaryBitmap);                  }                  else                  {                     result = Reader.decode(binaryBitmap, Options.Hints);                     usePreviousState = true;                  }               }            }            if (result != null ||                !luminanceSource.RotateSupported ||                !AutoRotate)               break;            binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.rotateCounterClockwise()));         }         if (result != null)         {            if (result.ResultMetadata =http://www.mamicode.com/= null)            {               result.putMetadata(ResultMetadataType.ORIENTATION, rotationCount * 90);            }            else if (!result.ResultMetadata.ContainsKey(ResultMetadataType.ORIENTATION))            {               result.ResultMetadata[ResultMetadataType.ORIENTATION] = rotationCount * 90;            }            else            {               // perhaps the core decoder rotates the image already (can happen if TryHarder is specified)               result.ResultMetadata[ResultMetadataType.ORIENTATION] = ((int)(result.ResultMetadata[ResultMetadataType.ORIENTATION]) + rotationCount * 90) % 360;            }            OnResultFound(result);         }         return result;      }

 

2.编码(待续)

【开源】ZXING的.NET版本源码解析