首页 > 代码库 > HDU 3549 Flow Problem (最大流ISAP)
HDU 3549 Flow Problem (最大流ISAP)
Flow Problem
Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 8199 Accepted Submission(s): 3814
Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
23 21 2 12 3 13 31 2 12 3 11 3 1
Sample Output
Case 1: 1
Case 2: 2
题意:给一个有向图,求源点为1汇点为n的最大流
思路:裸题,ISAP。。原来之前自己写的模版有点疏漏了。。
#include <vector>#include <cstdio>#include <cstring>#include <queue>#define FOR(i,n) for(i=1;i<=(n);i++)using namespace std;const int INF = 1e9;const int N = 1010;struct Edge{ int from,to,cap,flow;};struct ISAP{ int n,m,s,t; int p[N],num[N]; vector<Edge> edges; vector<int> G[N]; bool vis[N]; int d[N],cur[N]; void init(int _n,int _m) { n=_n; m=_m; int i; edges.clear(); FOR(i,n) { G[i].clear(); d[i]=INF; } } void AddEdge(int from,int to,int cap) { edges.push_back((Edge){from,to,cap,0}); edges.push_back((Edge){to,from,0,0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS() { memset(vis,0,sizeof(vis)); queue<int> Q; Q.push(t); d[t]=0; vis[t]=1; while(!Q.empty()) { int x = Q.front(); Q.pop(); for(unsigned i=0;i<G[x].size();i++) { Edge& e = edges[G[x][i]^1]; if(!vis[e.from] && e.cap>e.flow) { vis[e.from]=1; d[e.from] = d[x]+1; Q.push(e.from); } } } return vis[s]; } int Augment() { int x=t, a=INF; while(x!=s) { Edge& e = edges[p[x]]; a = min(a,e.cap-e.flow); x = edges[p[x]].from; } x = t; while(x!=s) { edges[p[x]].flow+=a; edges[p[x]^1].flow-=a; x=edges[p[x]].from; } return a; } int Maxflow(int _s,int _t) { s=_s; t=_t; int flow = 0, i; BFS(); if(d[s]>=n) return 0; memset(num,0,sizeof(num)); memset(p,0,sizeof(p)); FOR(i,n) if(d[i]<INF) num[d[i]]++; int x=s; memset(cur,0,sizeof(cur)); while(d[s]<n) { if(x==t) { flow+=Augment(); x=s; } int ok=0; for(unsigned i=cur[x];i<G[x].size();i++) { Edge& e=edges[G[x][i]]; if(e.cap>e.flow && d[x]==d[e.to]+1) { ok=1; p[e.to]=G[x][i]; cur[x]=i; x=e.to; break; } } if(!ok) { int m=n-1; for(unsigned i=0;i<G[x].size();i++) { Edge& e=edges[G[x][i]]; if(e.cap>e.flow) m=min(m,d[e.to]); } if(--num[d[x]]==0) break; num[d[x]=m+1]++; cur[x]=0; if(x!=s) x=edges[p[x]].from; } } return flow; }};ISAP isap;void run(){ int n,m,u,v,c; scanf("%d%d",&n,&m); isap.init(n,m); while(m--) { scanf("%d%d%d",&u,&v,&c); isap.AddEdge(u,v,c); //isap.AddEdge(v,u,c); } static int cas = 1; printf("Case %d: %d\n",cas++,isap.Maxflow(1,n));}int main(){ freopen("case.txt","r",stdin); int _; scanf("%d",&_); while(_--) run(); return 0;}
HDU 3549 Flow Problem (最大流ISAP)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。