首页 > 代码库 > 组合数学 - 波利亚定理 --- poj : 2154 Color

组合数学 - 波利亚定理 --- poj : 2154 Color

 Color

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 7873 Accepted: 2565

Description

Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected. 

You only need to output the answer module a given number P. 

Input

The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.

Output

For each test case, output one line containing the answer.

Sample Input

51 300002 300003 300004 300005 30000

Sample Output

131170629

Source

POJ Monthly,Lou Tiancheng
 

 

Mean: 

 给你一个包含N个珠子的项链,现在有N种颜色,让你从这N种颜色中选择一些颜色来将这些珠子染色,问可以染出多少种不同的珠子。

analyse:

 对于n比较小的情况我们可以直接暴力枚举置换群并统计其对应的C(f),考虑旋转i个珠子的循环群,我们可以证明其对应的不动的染色方案C(fi)=n^gcd(i,n)。为什么呢?我们可以这样考虑,假设珠子编号为0~n-1,对于旋转i个珠子的循环群,由于相邻间的珠子对应的旋转后位置还是相邻,所以这个循环群的环必然是大小相等的。假设其环的大小为T,那么就有(T*i)%n=0。假设T*i=k*n,i=g*x,n=g*y,其中g=gcd(i,n)。那么T=k*y/x,因为k为整数,x、y互质,所以使得T最小且为正整数的k=x,那么T=y,整个循环群中环的个数=n/T=g。所以我们可以得到C(fi)=n^gcd(i,n)。那么这个题目就转化为求sum{n^gcd(i,n)},1<=i<=n。

但是n<=10^9,这个数据范围太大,直接枚举必然超时,我们要考虑优化。观察上面的公式,我们发现虽然i的范围很大,但是gcd(i,n)的值却不多,最多为n的因子的个数。如果我们可以很快求出gcd(i,n)=g时i的个数,那么我们就能够得到一个很高效的算法。假设i=g*x,n=g*y,gcd(i,n)=g的条件为x、y互质,又因为1<=x<=y。所以满足条件的x的个数就是[1,y]里和y互质的数的个数,这就等于phi(y)。欧拉函数的值可以在O(n^(1/2))的复杂度内算出来,于是我们就得到了一个高效的算法。

Time complexity:O(n^(/12))

 

Source code:

 

#include <iostream>#include <cstdio>#include <cstring>#include <cmath>using namespace std;int n, yu;const int NN=10000000;bool v[NN];int p[NN];int len=-1;void make_p(){    int i,j;    for(i=2; i<NN; ++i)    {        if(!v[i]) p[++len] = i;        for(j=0; j<=len && i*p[j] < NN; ++j)        {            v[i*p[j]] =1;            if(i%p[j] == 0) break;        }    }}int work(int n) {    int temp = n;    for (int i = 0; i < len && p[i]*p[i] <= temp; ++i)    {        if (temp % p[i] == 0) {            n -= n/p[i];            do {                temp /= p[i];            }while (temp % p[i] == 0);        }    }    if (temp != 1) {        n -= n/temp;    }    return n%yu;}int solve(int m) {    int ans = 1;    int s = n%yu;    int temp = m;    while (temp > 0) {        if (temp&1) {            ans = (ans * s) % yu;        }        s = (s*s)%yu;        temp >>= 1;    }    return ans;}int main() {    make_p();    int t;    scanf("%d", &t);    while (t--) {        scanf("%d %d", &n, &yu);        int res = 0;        for (int i = 1; i*i <= n; ++i) {            if (i*i == n)            {                res = (res + work(i)*solve(i-1))%yu;            }            else if (n%i == 0)            {                res = (res + work(i)*solve(n/i-1) + work(n/i)*solve(i-1))%yu;            }        }        printf("%d\n", res);    }    return 0;}

  

组合数学 - 波利亚定理 --- poj : 2154 Color