首页 > 代码库 > 自己动手写CPU之第八阶段(3)——转移指令实现过程1

自己动手写CPU之第八阶段(3)——转移指令实现过程1

将陆续上传本人写的新书《自己动手写CPU》,今天是第35篇,我尽量每周四篇

开展晒书评送书活动,在亚马逊、京东、当当三大图书网站上,发表《自己动手写CPU》书评的前十名读者,均可获赠《步步惊芯——软核处理器内部设计分析》一书,大家踊跃参与吧!活动时间:2014-9-11至2014-10-20


转移指令的实现过程比较长,分两次介绍,今天是第一次


8.4 修改OpenMIPS以实现转移指令

8.4.1 修改取指阶段的PC模块

      参考图8-6可知,PC模块需要增加接口,增加的接口如表8-1所示。


      修改取指阶段的PC模块如下,主要修改一点:如果branch_flag_i为Branch,那么设置新的PC值为branch_target_address_i。完整代码位于本书附带光盘Code\Chapter8目录下的pc_reg.v文件。

module pc_reg(

  input	wire		        clk,
  input  wire                 rst,

  // 来自控制模块的信息
  input wire[5:0]             stall,

  // 来自译码阶段ID模块的信息
  input wire                  branch_flag_i,
  input wire[`RegBus]         branch_target_address_i,
	
  output reg[`InstAddrBus]    pc ,
  output reg                  ce
	
);

      ......

  always @ (posedge clk) begin
    if (ce == `ChipDisable) begin
       pc <= 32'h00000000;
    end else if(stall[0] == `NoStop) begin
       if(branch_flag_i == `Branch) begin
         pc <= branch_target_address_i;
       end else begin
         pc <= pc + 4'h4;
       end
    end
  end

endmodule

其中Branch是defines.v中给出的宏定义:
`define Branch     1'b1                // 转移
`define NotBranch  1'b0                // 不转移

8.4.2 修改译码阶段

      1、修改ID模块

      参考图8-6可知,ID模块需要增加一些接口,增加的接口描述如表8-2所示。


      在ID模块要增加对转移指令的分析,根据图8-3、8-4给出的转移指令格式可得,确定转移指令的过程如图8-7所示。


      其中涉及的宏定义如下,在本书附带光盘Code\Chapter8目录下的defines.v文件中可以找到这些定义。

`define EXE_J      6'b000010
`define EXE_JAL    6'b000011
`define EXE_JALR   6'b001001
`define EXE_JR     6'b001000
`define EXE_BEQ    6'b000100
`define EXE_BGEZ   5'b00001
`define EXE_BGEZAL 5'b10001
`define EXE_BGTZ   6'b000111
`define EXE_BLEZ   6'b000110
`define EXE_BLTZ   5'b00000
`define EXE_BLTZAL 5'b10000
`define EXE_BNE    6'b000101

此外,还新增如下宏定义,在实现转移指令时会使用到:
`define InDelaySlot          1'b1               // 在延迟槽中
`define NotInDelaySlot       1'b0               // 不在延迟槽中

      修改译码阶段的ID模块如下。完整代码请参考本书附带光盘Code\Chapter8目录下的id.v文件。

module id(
  ......

  // 如果上一条指令是转移指令,那么下一条指令进入译码阶段的时候,输入变量
  // is_in_delayslot_i为true,表示是延迟槽指令,反之,为false
  input wire                    is_in_delayslot_i,

  ......

  output reg                    next_inst_in_delayslot_o,
	
  output reg                    branch_flag_o,
  output reg[`RegBus]           branch_target_address_o, 
  output reg[`RegBus]           link_addr_o,
  output reg                    is_in_delayslot_o,
  ......
);

  ......
  wire[`RegBus] pc_plus_8;          
  wire[`RegBus] pc_plus_4;          

  wire[`RegBus] imm_sll2_signedext;
  
  assign pc_plus_8 = pc_i + 8;   //保存当前译码阶段指令后面第2条指令的地址
  assign pc_plus_4 = pc_i + 4;   //保存当前译码阶段指令后面紧接着的指令的地址

  // imm_sll2_signedext对应分支指令中的offset左移两位,再符号扩展至32位的值
  assign imm_sll2_signedext = {{14{inst_i[15]}}, inst_i[15:0], 2'b00 }; 
    
  always @ (*) begin	
    if (rst == `RstEnable) begin
      ......
      link_addr_o              <= `ZeroWord;
      branch_target_address_o  <= `ZeroWord;
      branch_flag_o            <= `NotBranch;
      next_inst_in_delayslot_o <= `NotInDelaySlot;
    end else begin
      ......
      aluop_o     <= `EXE_NOP_OP;
      alusel_o    <= `EXE_RES_NOP;
      wd_o        <= inst_i[15:11];          // 默认目的寄存器地址wd_o
      wreg_o      <= `WriteDisable;
      instvalid   <= `InstInvalid;
      reg1_read_o <= 1'b0;
      reg2_read_o <= 1'b0;
      reg1_addr_o <= inst_i[25:21];          // 默认的reg1_addr_o
      reg2_addr_o <= inst_i[20:16];          // 默认的reg2_addr_o
      imm         <= `ZeroWord;
      link_addr_o              <= `ZeroWord;
      branch_target_address_o  <= `ZeroWord;
      branch_flag_o            <= `NotBranch;	
      next_inst_in_delayslot_o <= `NotInDelaySlot;
      case (op)
        `EXE_SPECIAL_INST:		begin
           case (op2)
             5'b00000:			begin
               case (op3)
               ......
                  `EXE_JR: begin                      // jr指令
                     wreg_o                   <= `WriteDisable;
                     aluop_o                  <= `EXE_JR_OP;
                     alusel_o                 <= `EXE_RES_JUMP_BRANCH; 
                     reg1_read_o              <= 1'b1;
                     reg2_read_o              <= 1'b0;
                     link_addr_o              <= `ZeroWord;
                     branch_target_address_o  <= reg1_o;
                     branch_flag_o            <= `Branch;
                     next_inst_in_delayslot_o <= `InDelaySlot;
                     instvalid                <= `InstValid;
                  end
                  `EXE_JALR: begin                    // jalr指令
                     wreg_o                   <= `WriteEnable;
                     aluop_o                  <= `EXE_JALR_OP;
                     alusel_o                 <= `EXE_RES_JUMP_BRANCH; 
                     reg1_read_o              <= 1'b1;
                     reg2_read_o              <= 1'b0;
                     wd_o                     <= inst_i[15:11];
                     link_addr_o              <= pc_plus_8;
                     branch_target_address_o  <= reg1_o;
                     branch_flag_o            <= `Branch;
                     next_inst_in_delayslot_o <= `InDelaySlot;
                     instvalid                <= `InstValid;
                  end
                  default:	begin
                  end
            endcase
           end
         default: begin
         end
       endcase	
    end 
    ......
    `EXE_J: begin                               // j指令
        wreg_o                   <= `WriteDisable;
        aluop_o                  <= `EXE_J_OP;
        alusel_o                 <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o              <= 1'b0;	
        reg2_read_o              <= 1'b0;
        link_addr_o              <= `ZeroWord;
        branch_flag_o            <= `Branch;
        next_inst_in_delayslot_o <= `InDelaySlot;
        instvalid                <= `InstValid;
        branch_target_address_o  <=
        {pc_plus_4[31:28], inst_i[25:0], 2'b00};
    end
    `EXE_JAL: begin                             // jal指令
        wreg_o                   <= `WriteEnable;
        aluop_o                  <= `EXE_JAL_OP;
        alusel_o                 <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o              <= 1'b0;
        reg2_read_o              <= 1'b0;
        wd_o                     <= 5'b11111;
        link_addr_o              <= pc_plus_8 ;
        branch_flag_o            <= `Branch;
        next_inst_in_delayslot_o <= `InDelaySlot;	
        instvalid                <= `InstValid;
        branch_target_address_o  <=
                {pc_plus_4[31:28], inst_i[25:0], 2'b00};
    end
    `EXE_BEQ: begin                            // beq指令
        wreg_o      <= `WriteDisable;
        aluop_o     <= `EXE_BEQ_OP;
        alusel_o    <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o <= 1'b1;
        reg2_read_o <= 1'b1;
        instvalid   <= `InstValid;
        if(reg1_o == reg2_o) begin
          branch_target_address_o  <= pc_plus_4 + imm_sll2_signedext;
          branch_flag_o            <= `Branch;
          next_inst_in_delayslot_o <= `InDelaySlot;
        end
    end
    `EXE_BGTZ: begin                            // bgtz指令
        wreg_o      <= `WriteDisable;
        aluop_o     <= `EXE_BGTZ_OP;
        alusel_o    <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o <= 1'b1;	
        reg2_read_o <= 1'b0;
        instvalid   <= `InstValid;	
        if((reg1_o[31] == 1'b0) && (reg1_o != `ZeroWord)) begin
           branch_target_address_o  <= pc_plus_4 + imm_sll2_signedext;
           branch_flag_o            <= `Branch;
           next_inst_in_delayslot_o <= `InDelaySlot;
        end
    end
    `EXE_BLEZ:	begin                            // blez指令
        wreg_o      <= `WriteDisable;
        aluop_o     <= `EXE_BLEZ_OP;
        alusel_o    <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o <= 1'b1;	
        reg2_read_o <= 1'b0;
        instvalid   <= `InstValid;
        if((reg1_o[31] == 1'b1) || (reg1_o == `ZeroWord)) begin
           branch_target_address_o  <= pc_plus_4 + imm_sll2_signedext;
           branch_flag_o            <= `Branch;
           next_inst_in_delayslot_o <= `InDelaySlot;
        end
    end
    `EXE_BNE: begin                             // bne指令
        wreg_o      <= `WriteDisable;
        aluop_o     <= `EXE_BLEZ_OP;
        alusel_o    <= `EXE_RES_JUMP_BRANCH; 
        reg1_read_o <= 1'b1;
        reg2_read_o <= 1'b1;
        instvalid   <= `InstValid;
        if(reg1_o != reg2_o) begin
           branch_target_address_o  <= pc_plus_4 + imm_sll2_signedext;
           branch_flag_o            <= `Branch;
           next_inst_in_delayslot_o <= `InDelaySlot;
        end
    end
    `EXE_REGIMM_INST:		begin
        case (op4)
          `EXE_BGEZ:	begin                      // bgez指令
              wreg_o      <= `WriteDisable;
              aluop_o     <= `EXE_BGEZ_OP;
              alusel_o    <= `EXE_RES_JUMP_BRANCH; 
              reg1_read_o <= 1'b1;
              reg2_read_o <= 1'b0;
              instvalid   <= `InstValid;
              if(reg1_o[31] == 1'b0) begin
                 branch_target_address_o <= 
                 pc_plus_4 + imm_sll2_signedext;
                 branch_flag_o <= `Branch;
                 next_inst_in_delayslot_o <= `InDelaySlot; 
              end
           end
          `EXE_BGEZAL:	begin                      // bgezal指令
              wreg_o      <= `WriteEnable;	
              aluop_o     <= `EXE_BGEZAL_OP;
              alusel_o    <= `EXE_RES_JUMP_BRANCH; 
              reg1_read_o <= 1'b1;
              reg2_read_o <= 1'b0;
              link_addr_o <= pc_plus_8; 
              wd_o        <= 5'b11111;
              instvalid   <= `InstValid;
              if(reg1_o[31] == 1'b0) begin
                 branch_target_address_o <= 
                 pc_plus_4 + imm_sll2_signedext;
                 branch_flag_o <= `Branch;
                 next_inst_in_delayslot_o <= `InDelaySlot;
              end
            end
           `EXE_BLTZ: begin                      // bltz指令
              wreg_o      <= `WriteDisable;
              aluop_o     <= `EXE_BGEZAL_OP;
              alusel_o    <= `EXE_RES_JUMP_BRANCH; 
              reg1_read_o <= 1'b1;
              reg2_read_o <= 1'b0;
              instvalid   <= `InstValid;
              if(reg1_o[31] == 1'b1) begin
                 branch_target_address_o <= 
                 pc_plus_4 + imm_sll2_signedext;
                 branch_flag_o <= `Branch;
                 next_inst_in_delayslot_o <= `InDelaySlot;
              end
            end
           `EXE_BLTZAL: begin                   // bltzal指令
              wreg_o      <= `WriteEnable;
              aluop_o     <= `EXE_BGEZAL_OP;
              alusel_o    <= `EXE_RES_JUMP_BRANCH; 
              reg1_read_o <= 1'b1;
              reg2_read_o <= 1'b0;
              link_addr_o <= pc_plus_8;
              wd_o        <= 5'b11111; 
              instvalid   <= `InstValid;
              if(reg1_o[31] == 1'b1) begin
                 branch_target_address_o <= 
                 pc_plus_4 + imm_sll2_signedext;
                 branch_flag_o <= `Branch;
                 next_inst_in_delayslot_o <= `InDelaySlot;
               end
           end
           default:	begin
         end
     endcase

  ......
       
   // 输出变量is_in_delayslot_o表示当前译码阶段指令是否是延迟槽指令
  always @ (*) begin
    if(rst == `RstEnable) begin
       is_in_delayslot_o <= `NotInDelaySlot;
    end else begin
      // 直接等于is_in_delayslot_i
      is_in_delayslot_o <= is_in_delayslot_i; 
    end
   end

endmodule

      对其中几个典型指令的译码过程解释如下。

      (1)jr指令

  •  jr指令不需要保存返回地址,所以设置wreg_o为WriteDisable,设置返回地址link_addr_o为0,aluop_o保持默认值EXE_NOP_OP,alusel_o保持默认值EXE_RES_NOP。
  •  jr指令要转移到的目标地址是通用寄存器rs的值,所以需要设置reg1_read_o为1,表示通过Regfile模块的读端口1读取寄存器,读取的寄存器地址正是指令中的rs,所以最终译码阶段的输出reg1_o就是地址为rs的寄存器的值。
  •  jr指令是绝对转移,所以设置branch_flag_o为Branch。
  •  设置转移目标地址branch_target_address_o为reg1_o,也即是读取出来的通用寄存器rs的值。
  •  下一条指令是延迟槽指令,所以设置next_inst_in_delayslot_o为InDelaySlot。

      j指令与jr类似,只是转移目标地址不再是通用寄存器的值,所以不需要读取通用寄存器,设置reg1_read_o为0,转移目标地址如下。

{pc_plus_4[31:28], inst_i[25:0], 2'b00}

      (2)jalr指令

  •  jalr指令需要保存返回地址,所以设置wreg_o为WriteEnable,设置返回地址link_addr_o为当前转移指令后面第2条指令的地址,即pc_plus_8。此外,还要设置alusel_o为EXE_RES_JUMP_BRANCH,设置要写的目的寄存器地址wd_o为指令的第11-15bit,正是图8-3中的rd。
  •  jalr指令要转移到的目标地址是通用寄存器rs的值,所以需要设置reg1_read_o为1,表示通过Regfile模块的读端口1读取寄存器,读取的寄存器地址正是指令中的rs,所以最终译码阶段的输出reg1_o就是地址为rs的寄存器的值。
  •  jalr指令是绝对转移,所以设置branch_flag_o为Branch。
  •  设置转移目的地址branch_target_address_o为reg1_o,也即是读取出来的通用寄存器rs的值。
  •  下一条指令是延迟槽指令,所以设置next_inst_in_delayslot_o为InDelaySlot。

      jal指令与jalr类似,只是jal指令将返回地址写到寄存器$31中,所以wd_o直接设置为5‘b11111,另外,转移目标地址不再是通用寄存器的值,所以不需要读取通用寄存器,设置reg1_read_o为0,转移目标地址如下。

{pc_plus_4[31:28], inst_i[25:0], 2'b00}

      (3)beq指令

  •  beq指令不需要保存返回地址,所以设置wreg_o为WriteDisable,设置返回地址link_addr_o为0,aluop_o保持默认值EXE_NOP_OP,alusel_o保持默认值EXE_RES_NOP。
  •  beq指令是条件转移,转移条件是两个通用寄存器的值相等,所以需要读取两个通用寄存器,设置reg1_read_o、reg2_read_o为1,表示通过Regfile模块的读端口1、读端口2读取寄存器,读取的寄存器地址分别指令中的rs、rt。所以最终译码阶段的输出reg1_o就是地址为rs的寄存器的值,reg2_o就是地址为rt的寄存器的值。
  •  对于beq指令,如果读取的两个通用寄存器的值相等(即reg1_o等于reg2_o),那么转移发生,设置branch_flag_o为Branch,同时设置转移目的地址branch_target_address_o为pc_plus_4 +imm_sll2_signedext。此外,下一条指令是延迟槽指令,所以设置next_inst_in_delayslot_o为InDelaySlot。

      bne指令与beq类似,只是转移条件是两个通用寄存器的值不相等。

      (4)bgtz指令

  •  bgtz指令不需要保存返回地址,所以设置wreg_o为WriteDisable,设置返回地址link_addr_o为0,aluop_o保持默认值EXE_NOP_OP,alusel_o保持默认值EXE_RES_NOP。
  •  bgtz指令是条件转移,转移条件是地址为rs的通用寄存器的值大于0,所以需要设置reg1_read_o为1,表示通过Regfile模块的读端口1读取寄存器,读取的寄存器地址正是指令中的rs。所以最终译码阶段的输出reg1_o就是地址为rs的寄存器的值。
  •  对于bgtz指令,如果读取的地址为rs的通用寄存器的值大于0(即reg1_o大于0),那么转移发生,设置branch_flag_o为Branch,同时设置转移目的地址branch_target_address_o为pc_plus_4 +imm_sll2_signedext。此外,下一条指令是延迟槽指令,所以设置next_inst_in_delayslot_o为InDelaySlot。

      blez、bgez、bltz指令与bgtz类似,只是转移条件不同。

      (5)bgezal指令

  •  bgezal指令需要保存返回地址,所以设置wreg_o为WriteEnable,设置返回地址link_addr_o为pc_plus_8, 设置alusel_o为EXE_RES_JUMP_BRANCH,此外,要将返回地址保存到寄存器$31,所以设置wd_o为5‘b11111。
  •  bgezal指令是条件转移,转移条件是地址为rs的通用寄存器的值大于等于0,所以需要设置reg1_read_o为1,表示通过Regfile模块的读端口1读取寄存器,读取的寄存器地址正是指令中的rs。所以最终译码阶段的输出reg1_o就是地址为rs的寄存器的值。
  •  对于bgezal指令,如果读取的地址为rs的通用寄存器的值大于等于0(即reg1_o大于等于0),那么转移发生,设置branch_flag_o为Branch,同时设置转移目的地址branch_target_address_o为pc_plus_4 +imm_sll2_signedext。此外,下一条指令是延迟槽指令,所以设置next_inst_in_delayslot_o为InDelaySlot。

      bltzal指令与bgezal类似,只是转移条件是地址为rs的通用寄存器的值小于0。

      2、修改ID/EX模块

      参考图8-6可知,ID/EX模块需要增加一些接口,增加的接口描述如表8-3所示。


      ID/EX模块的代码主要修改如下,很简单,当流水线译码阶段没有被暂停时,ID/EX模块在时钟上升沿将新增加的输入传递到对应的输出。完整代码位于本书附带光盘Code\Chapter8目录下的id_ex.v文件。

module id_ex(

  ......
  input wire[`RegBus]           id_link_address,
  input wire                    id_is_in_delayslot,
  input wire                    next_inst_in_delayslot_i,
	
  ......
  output reg[`RegBus]           ex_link_address,
  output reg                    ex_is_in_delayslot,
  output reg                    is_in_delayslot_o
	
);

  always @ (posedge clk) begin
    if (rst == `RstEnable) begin
      ......
      ex_link_address    <= `ZeroWord;
      ex_is_in_delayslot <= `NotInDelaySlot;
      is_in_delayslot_o  <= `NotInDelaySlot;
    end else if(stall[2] == `Stop && stall[3] == `NoStop) begin
      .....
      ex_link_address    <= `ZeroWord;
      ex_is_in_delayslot <= `NotInDelaySlot;
    end else if(stall[2] == `NoStop) begin
      ......
      ex_link_address    <= id_link_address;
      ex_is_in_delayslot <= id_is_in_delayslot;
      is_in_delayslot_o  <= next_inst_in_delayslot_i;
    end
  end
  ......

未完待续!




自己动手写CPU之第八阶段(3)——转移指令实现过程1