首页 > 代码库 > 454. 4Sum II
454. 4Sum II
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
解题思路:将四个list分成两组,首先把第一组的两个队列用map将出现的和sum的次数存起来,然后去遍历后一组的和,如果出现了-sum,即map[sum]!=0则加上map[sum],因为是随意组合,所以取叉积。
class Solution { public: int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) { unordered_map<int,int>m; int sum=0; int n=A.size(); for(int i=0;i<n;i++) for(int j=0;j<n;j++) m[A[i]+B[j]]++; for(int i=0;i<n;i++) for(int j=0;j<n;j++) if(m[-C[i]-D[j]])sum+=m[-C[i]-D[j]]; return sum; } };
454. 4Sum II
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。