首页 > 代码库 > nyoj Wythoff Game(暴力枚举)

nyoj Wythoff Game(暴力枚举)

Wythoff Game

时间限制:1000 ms | 内存限制:65535 KB

难度:1

描述

最近ZKC同学在学博弈,学到了一个伟大的博弈问题--威佐夫博弈。
相信大家都学过了吧?没学过?没问题。我将要为你讲述一下这个伟大的博弈问题。
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。
游戏规定,每次有两种不同的取法:
一是可以在任意的一堆中取走任意多的石子;
二是可以在两堆中同时取走相同数量的石子。
最后把石子全部取完者为胜者。
我们今天要做的是求前n个必败态。
什么是必败态?比如我们把(ab)称为一种状态,ab分别为两堆石子中所剩的数目。如果a=0b=0,我们说该种状态为必败态,因为我不能再进行游戏,即使是可以进行,那也是必败的,你知道,游戏的我们都是非常聪明的。(0,0)(1,2)(3,5...都是必败态,我们今天要做的就是求前n个必败态。不会?好吧!
我再告诉你:假设第n个必败态为(aba为前n-1个必败态中没有出现的最小自然数,b=a+n。这下大家应该明白了吧。好吧,我们的任务就的要前n个必败态。规定第0个必败态为(0,0)。

输入

多组数据。
输入为一个数n0<=n<=100000)。

输出

按照要求求出前n个必败态。输出格式看下面样例。

样例输入

3

1

样例输出

(0,0)(1,2)(3,5)(4,7)

(0,0)(1,2)

提示

注意:每种情况中间没有空格

思路:

就是运用的威佐夫博弈的原始定义。bk=ak+k;ak=(1+sqrt(5))/2*k;

就是简单的暴力枚举。

代码如下:

<span style="font-size:14px;">#include<stdio.h>
#include<math.h>
struct sit{
	int a,b;
}s[100100];
void f()
{
	s[0].a=s[0].b=0;
	for(int i=1;i<100100;i++)
	{
		s[i].a=(1+sqrt(5))*i/2;
		s[i].b=s[i].a+i;
	}
}
int main()
{
	int n;
	f();
	while(~scanf("%d",&n))
	{
		for(int i=0;i<=n;i++)
		{
			printf("(%d,%d)",s[i].a,s[i].b);
		}
		puts("");
	}
	return 0;
}</span>


nyoj Wythoff Game(暴力枚举)