首页 > 代码库 > NYOJ 300 && hdu 2276 Kiki & Little Kiki 2 (矩阵快速幂)
NYOJ 300 && hdu 2276 Kiki & Little Kiki 2 (矩阵快速幂)
Kiki & Little Kiki 2
时间限制:5000 ms | 内存限制:65535 KB
难度:4
- 描述
- There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it‘s on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)- 输入
- The input contains no more than 1000 data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains ‘0‘ and ‘1‘ , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is ‘1‘, it means the light i is on, otherwise the light is off. - 输出
- For each data set, output all lights‘ state at m seconds in one line. It only contains character ‘0‘ and ‘1.
- 样例输入
1 0101111 10 100000001
- 样例输出
1111000 001000010
题意:给出一些灯的初始状态(用0、1表示),对这些灯进行m次变换;若当前灯的前一盏灯的状态为1,则调整当前灯的状态,0变为1,1变为0;否则不变。第1盏灯的前一盏灯是最后一盏灯。问最后每盏灯的状态。
分析:通过模拟可以发现,假设有n盏灯,第i盏灯的状态为f[i],则f[i] = (f[i] + f[i-1])%2;又因为这些灯形成了环,则f[i] = (f[i] + f[(n+i-2)%n+1])%2. 这样初始状态形成一个1*n的矩阵,然后构造出如下n*n的矩阵:
1 1 0…… 0 0
0 1 1…… 0 0
……………………
1 0 0…… 0 1
每次乘以这个矩阵得出的结果就是下一个状态。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 105; char state[N]; struct Matrix { Matrix() {} void Init(int n) { row = n; col = n; memset(mat, 0, sizeof(mat)); for(int i = 0; i < n; i++) mat[i][i] = 1; } void Init(int m, int n) { row = m; col = n; memset(mat, 0, sizeof(mat)); } int row, col; int mat[N][N]; const Matrix &Pow(int n); }; const Matrix &operator *(const Matrix &A, const Matrix &B) { Matrix res; res.Init(A.row, B.col); for(int i = 0; i < A.row; i++) { for(int j = 0; j < A.col; j++) { if(A.mat[i][j]) { for(int k = 0; k < B.col; k++) { if(B.mat[j][k]) res.mat[i][k] = res.mat[i][k] ^ (A.mat[i][j] & B.mat[j][k]); } } } } return res; } const Matrix &Matrix::Pow(int n) { Matrix tmp, pre; tmp = *this; pre.Init(this->row); while(n) { if(n&1) pre = tmp * pre; tmp = tmp * tmp; n >>= 1; } return pre; } int main() { int m; Matrix A, B, ans; while(~scanf("%d", &m)) { scanf("%s",state); int len = strlen(state); A.Init(1, len); for(int i = 0; i < len; i++) A.mat[0][i] = state[i] - '0'; B.Init(len); for(int i = 0; i < len; i++) { B.mat[i][i] = 1; B.mat[i][(i+1)%len] = 1; } ans = A * B.Pow(m); for(int i = 0; i < len; i++) printf("%d", ans.mat[0][i]); printf("\n"); } return 0; }
NYOJ 300 && hdu 2276 Kiki & Little Kiki 2 (矩阵快速幂)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。