首页 > 代码库 > HDU 5044(2014 ACM-ICPC上海网络赛)

HDU 5044(2014 ACM-ICPC上海网络赛)

题意:给定一个树形图,节点10^5,有两种操作,一种是把某两点间路径(路径必定唯一)上所有点的权值增加一个固定值。

另一种也是相同操作,不同的是给边加权值。操作次数10^5。求操作过后,每个点和每条边的权值。

分析:此题时间卡得非常紧,最好用输入外挂,最好不要用RMQ来求解LCA。

此题是典型的在线LCA问题,先讲讲在线LCA要怎么做。

在线LCA有两种方法,第一种比较常见,即将其转化成RMA问题。

 

先对树形图进行深度优先遍历,遍历过程记录路线中点的途经序列,每个非叶子节点会在序列中出现多次,从一个节点A的一个子节点回到A点再走另一个子节点的时候要再次加A加入序列。

记录序列的同时还要记录序列中每个点在树中对应的深度。以及在序列中第一次出现的位置(其实不一定非要第一个才行),主要用于根据点标号查找其在序列中对应的下标。

此时,LCA已经转化为RMQ,如果要求a,b的LCA,只需要找到a,b在遍历序列中分别对应的位置,并在深度序列中查找以这两点为端点的区间内的最小值即可。这个最小值在遍历序列中对应的点就是他们的LCA。

这种方法预处理O(NlogN),查询是O(1)。

模板如下:

//first call init_LCA(root).//then call LCA(a, b) to quest the LCA of a and b.//the graph can be both bidirected or unidirected.#define MAX_NODE_NUM 0#define MAX_EDGE_NUM 0#define M 30struct Edge{    int v, next, id;    Edge()    {}    Edge(int v, int next, int id):v(v), next(next), id(id)    {}} edge[MAX_EDGE_NUM];int head[MAX_NODE_NUM];int edge_cnt;void init_edge(){    memset(head, -1, sizeof(head));    edge_cnt = 0;}void add_edge(int u, int v, int id){    edge[edge_cnt] = Edge(v, head[u], id);    head[u] = edge_cnt++;}bool vis[MAX_NODE_NUM];int father[MAX_NODE_NUM];int power[M];int st[MAX_NODE_NUM * 2][M];int ln[MAX_NODE_NUM * 2];int seq_cnt;int seq[2*MAX_NODE_NUM];int depth[2*MAX_NODE_NUM];int first_appearance[MAX_NODE_NUM];//returns the index of the first minimum value in [x, y]void init_RMQ(int f[], int n){    int i, j;    for (power[0] = 1, i = 1; i < 21; i++)    {        power[i] = 2 * power[i - 1];    }    for (i = 0; i < n; i++)    {        st[i][0] = i;    }    ln[0] = -1;    for (int i = 1; i <= n; i++)    {        ln[i] = ln[i >> 1] + 1;    }    for (j = 1; j < ln[n]; j++)    {        for (i = 0; i < n; i++)        {            if (i + power[j - 1] - 1 >= n)            {                break;            }            //for maximum, change ">" to "<"            //for the last, change "<" or ">" to "<=" or ">="            if (f[st[i][j - 1]] > f[st[i + power[j - 1]][j - 1]])            {                st[i][j] = st[i + power[j - 1]][j - 1];            }            else            {                st[i][j] = st[i][j - 1];            }        }    }}int query(int x, int y){    if(x > y)    {        swap(x, y);    }    int k = ln[y - x + 1];    //for maximum, change ">" to "<"    //for the last, change "<" or ">" to "<=" or ">="    if (depth[st[x][k]] > depth[st[y - power[k] + 1][k]])        return st[y - power[k] + 1][k];    return st[x][k];}void dfs(int u ,int current_depth){    vis[u] = true;    first_appearance[u] = seq_cnt;    depth[seq_cnt] = current_depth;    seq[seq_cnt++] = u;    for(int i = head[u]; i != -1; i = edge[i].next)    {        int v = edge[i].v;        if (vis[v])        {            continue;        }        father[v] = u;        if (!vis[v])        {            dfs(v, current_depth + 1);            depth[seq_cnt] = current_depth;            seq[seq_cnt++] = u;        }    }}void init_LCA(int root){    memset(vis, 0, sizeof(vis));    father[root] = -1;    seq_cnt = 0;    dfs(root, 0);    init_RMQ(depth, seq_cnt);}//O(1)int LCA(int u ,int v){    int x = first_appearance[u];    int y = first_appearance[v];    int res = query(x, y);    return seq[res];}
View Code

 

 

另一种方法用到了DP的思想。

用一个数组f[i][j]表示i点在树中到根节点的序列中距离i边数为2^j的点。

那么f[i][j] = f[ f[i][j - 1] ][j - 1]。

具体做法是,我们进行BFS,记录每个点的父节点,即f[i][0]。和每个点的深度。

然后根据状态转移公式填充整个数组。

在查询时,先看a,b两点谁的深度大,利用两者深度差的二进制序列,配合f数组,找到较深的点在较浅的点那层的祖先。

然后继续使用f数组,每次向上探测2^i的距离的点两者的祖先是否为同一个,如果不是则i++后继续叠加向上探测2^i,如果是同一个则i--后重新探测。直到找到最小的公共祖先为止。

这种方法预处理O(NlogN),查询是O(NlogN)。但与上一种方法相比,不需要dfs,而用bfs,这样可以节省很多时间。

模板如下:

#define MAX_NODE_NUM 0#define MAX_EDGE_NUM 0#define MAX_Q_LEN MAX_NODE_NUM#define M 30struct Edge{    int v, next, id;    Edge()    {}    Edge(int v, int next, int id):v(v), next(next), id(id)    {}} edge[MAX_EDGE_NUM];int head[MAX_NODE_NUM];int edge_cnt;void init_edge(){    memset(head, -1, sizeof(head));    edge_cnt = 0;}void add_edge(int u, int v, int id){    edge[edge_cnt] = Edge(v, head[u], id);    head[u] = edge_cnt++;}bool vis[MAX_NODE_NUM];int father[MAX_NODE_NUM][M];int depth[MAX_NODE_NUM];template<typename T>class queue{    T data[MAX_Q_LEN];    int head, rear;public:    queue()    {        head = rear = 0;    }    bool empty()    {        return head == rear;    }    void pop()    {        head++;        if (head >= MAX_Q_LEN)            head = 0;    }    void push(T a)    {        data[rear++] = a;        if (rear >= MAX_Q_LEN)            rear = 0;    }    T front()    {        return data[head];    }};void bfs(int root){    queue<int> q;    q.push(root);    seq2_cnt = 0;    while (!q.empty())    {        int u = q.front();        q.pop();        vis[u] = true;        seq2[seq2_cnt++] = u;        for (int i = head[u]; i != -1; i = edge[i].next)        {            int v = edge[i].v;            if (vis[v])            {                continue;            }            father[v][0] = u;            depth[v] = depth[u] + 1;            q.push(v);        }    }}//index start from 1.void init_LCA(int root){    fill_n(vis, node_num + 1, 0);    memset(father, 0, sizeof(father));    bfs(root);    bool did;    for (int i = 1; i < M; i++)    {        did = false;        for (int j = 1; j <= node_num; j++)        {            int k = father[j][i - 1];            if (k <= 0)            {                continue;            }            father[j][i] = father[k][i - 1];            did = true;        }        if (!did)        {            break;        }    }}//O(log(n))int LCA(int x, int y){    if (depth[x] > depth[y])    {        swap(x, y);    }    int diff = depth[y] - depth[x];    for (int i = 0; i < M && diff; i++)    {        if (diff & 1)        {            y = father[y][i];        }        diff >>= 1;    }    if (x == y)    {        return x;    }    int exp = 0;    while (x != y)    {        if (!exp || father[x][exp] != father[y][exp])        {            x = father[x][exp];            y = father[y][exp];            exp++;        }else        {            exp--;        }    }    return x;}
View Code

 

 

再说说这题是怎么做的。將种操作进行一下转化,认为每次加权操作都是分别向由两点到他们的LCA的路径加权。

还可以进行进一步的转化设a,b为要加权的路径两端点,他们的LCA为c,根节点为root。

那么该加权操作可转化为由a和b到root分别加权,再由c到root加两倍的负权。这样正负抵消后与原操作等价。

这样转化之后,所有的操作都便成了到根节点的操作,那么只需要將所有的操作标记在非根节点的另一个点上,然后自底向上把操作树中的每个点,將该点的子节点中的权值操作向上传递即可。

 

本题不可以使用第一种方法,会超时,可能是dfs太耗时。用第二种方法虽然查询时间稍慢,但是通过了。

代码如下:

#include <iostream>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <cmath>using namespace std;#define MAX_NODE_NUM 100005#define MAX_EDGE_NUM MAX_NODE_NUM * 2#define MAX_Q_LEN MAX_NODE_NUM#define M 30#define D(x) struct Edge{    int v, next, id;    Edge()    {}    Edge(int v, int next, int id):v(v), next(next), id(id)    {}} edge[MAX_EDGE_NUM];int head[MAX_NODE_NUM];int edge_cnt;void init_edge(){    memset(head, -1, sizeof(head));    edge_cnt = 0;}void add_edge(int u, int v, int id){    edge[edge_cnt] = Edge(v, head[u], id);    head[u] = edge_cnt++;}int node_num, opr_num;long long edge_opr[MAX_NODE_NUM];long long node_opr[MAX_NODE_NUM];bool vis[MAX_NODE_NUM];long long ans_edge[MAX_EDGE_NUM];int father[MAX_NODE_NUM][M];int depth[MAX_NODE_NUM];int seq2[MAX_NODE_NUM];int seq2_cnt;template<typename T>class queue{    T data[MAX_Q_LEN];    int head, rear;public:    queue()    {        head = rear = 0;    }    bool empty()    {        return head == rear;    }    void pop()    {        head++;        if (head >= MAX_Q_LEN)            head = 0;    }    void push(T a)    {        data[rear++] = a;        if (rear >= MAX_Q_LEN)            rear = 0;    }    T front()    {        return data[head];    }};void bfs(int root){    queue<int> q;    q.push(root);    seq2_cnt = 0;    while (!q.empty())    {        int u = q.front();        q.pop();        vis[u] = true;        seq2[seq2_cnt++] = u;        for (int i = head[u]; i != -1; i = edge[i].next)        {            int v = edge[i].v;            if (vis[v])            {                continue;            }            father[v][0] = u;            depth[v] = depth[u] + 1;            q.push(v);        }    }}//index start from 1.void init_LCA(int root){    fill_n(vis, node_num + 1, 0);    memset(father, 0, sizeof(father));    bfs(root);    bool did;    for (int i = 1; i < M; i++)    {        did = false;        for (int j = 1; j <= node_num; j++)        {            int k = father[j][i - 1];            if (k <= 0)            {                continue;            }            father[j][i] = father[k][i - 1];            did = true;        }        if (!did)        {            break;        }    }}int LCA(int x, int y){    if (depth[x] > depth[y])    {        swap(x, y);    }    int diff = depth[y] - depth[x];    for (int i = 0; i < M && diff; i++)    {        if (diff & 1)        {            y = father[y][i];        }        diff >>= 1;    }    if (x == y)    {        return x;    }    int exp = 0;    while (x != y)    {        if (!exp || father[x][exp] != father[y][exp])        {            x = father[x][exp];            y = father[y][exp];            exp++;        }else        {            exp--;        }    }    return x;}inline int read_int(){    int num = 0;    int sign = 1;    bool skip = false;    int c = 0;    while((c = getchar()) != EOF)    {        if(c == -)        {            sign = -1;            skip = true;        }        else if(c >= 0 && c <= 9)        {            num = num * 10 + c - 0;            skip = true;        }        else if(skip)    {        break;    }    }    return num * sign;}inline int ReadOP(){    int c = 0;    while((c = getchar()) != EOF && c != A);    getchar(); getchar();    return getchar();}void input(){    scanf("%d%d", &node_num, &opr_num);    for (int i = 0; i < node_num - 1; i++)    {        int a, b;        a = read_int();        b = read_int();        add_edge(a, b, i);        add_edge(b, a, i);    }    init_LCA(1);    fill_n(edge_opr, node_num + 1, 0);    fill_n(node_opr, node_num + 1, 0);    fill_n(ans_edge, node_num + 1, 0);    for (int i = 0; i < opr_num; i++)    {        int a, b, k;        int op = ReadOP();        a = read_int();        b = read_int();        k = read_int();        int c = LCA(a, b);        D(printf("%d\n", c));        if (op == 2)        {            edge_opr[c] -= k * 2;            edge_opr[a] += k;            edge_opr[b] += k;        }else        {            node_opr[c] -= k;            if (father[c][0] > 0)            {                node_opr[father[c][0]] -= k;            }            node_opr[a] += k;            node_opr[b] += k;        }    }}void work(){    for (int i = seq2_cnt - 1; i >= 0; i--)    {        int u = seq2[i];        D(printf("%d %lld\n", u, node_opr[u]));        for (int j = head[u]; j != -1; j = edge[j].next)        {            int v = edge[j].v;            if (v == father[u][0])            {                continue;            }            node_opr[u] += node_opr[v];            edge_opr[u] += edge_opr[v];            ans_edge[edge[j].id] = edge_opr[v];        }        D(printf("%d %lld\n", u, node_opr[u]));    }}void output(){    bool first = true;    for (int i = 1; i <= node_num; i++)    {        if (first)        {            first = false;        }else        {            putchar( );        }        printf("%lld", node_opr[i]);    }    puts("");    first = true;    for (int i = 0; i < node_num - 1; i++)    {        if (first)        {            first = false;        }else        {            putchar( );        }        printf("%lld", ans_edge[i]);    }    puts("");}int main(){    int t;    scanf("%d", &t);    for (int i = 0; i < t; i++)    {        printf("Case #%d:\n", i + 1);        init_edge();        seq2_cnt = 0;        input();        work();        output();    }    return 0;}
View Code

 

HDU 5044(2014 ACM-ICPC上海网络赛)