首页 > 代码库 > LInux中ThreadInfo中的preempt_count字段
LInux中ThreadInfo中的preempt_count字段
最近看各种上下文,发现和ThreadInfo中的preemption字段密切,于是便调查了下。
看下Linux源码中的注释:
/*
* We put the hardirq and softirq counter into the preemption
* counter. The bitmask has the following meaning:
*
* - bits 0-7 are the preemption count (max preemption depth: 256)
* - bits 8-15 are the softirq count (max # of softirqs: 256)
*
* The hardirq count can in theory reach the same as NR_IRQS.
* In reality, the number of nested IRQS is limited to the stack
* size as well. For archs with over 1000 IRQS it is not practical
* to expect that they will all nest. We give a max of 10 bits for
* hardirq nesting. An arch may choose to give less than 10 bits.
* m68k expects it to be 8.
*
* - bits 16-25 are the hardirq count (max # of nested hardirqs: 1024)
* - bit 26 is the NMI_MASK
* - bit 27 is the PREEMPT_ACTIVE flag
*
* PREEMPT_MASK: 0x000000ff
* SOFTIRQ_MASK: 0x0000ff00
* HARDIRQ_MASK: 0x03ff0000
* NMI_MASK: 0x04000000
*/
这里其实把preempt_count划分成了四部分:抢占计数器、软中断计数、硬件中断计数、NMI计数。
抢占计数器:0-7位
软中断计数器:8-15位
硬中断计数器:16-25位
NMI标识:26位
基于上面的信息,看下Linux内核中判断各个上下文的宏:
#define hardirq_count() (preempt_count() & HARDIRQ_MASK) #define softirq_count() (preempt_count() & SOFTIRQ_MASK) #define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK | NMI_MASK))
可以看到这里判断硬件中断/软中断/中断上下文的实质,就是根据thread_info结构中的preempt_count字段,额忘记列出preempt_count()的实现了:#define preempt_count() (current_thread_info()->preempt_count),这时明白了吧!!!
不过后面几个掩码的计算有点绕,参考下源码:
#define __IRQ_MASK(x) ((1UL << (x))-1) #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT)
实质上就是取对应的位。
* * Are we doing bottom half or hardware interrupt processing? * Are we in a softirq context? Interrupt context? * in_softirq - Are we currently processing softirq or have bh disabled? * in_serving_softirq - Are we currently processing softirq? */ #define in_irq() (hardirq_count()) #define in_softirq() (softirq_count()) #define in_interrupt() (irq_count()) #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
而这里只是对上面各种计数的包装,只要对应的计数不为0,则表示在对应的上下文中。in_interrupt表示中断上下文,包括了硬件中断、软中断和NMI中断。in_serving_softirq判断是否当前正在处理软中断。
#define in_nmi() (preempt_count() & NMI_MASK)
in_nmi判断当前是否在NMI中断上下文。
既然如此,咱们再结合内核抢占调度的情况,看下抢占调度函数
asmlinkage void __sched notrace preempt_schedule(void) { struct thread_info *ti = current_thread_info(); /* * If there is a non-zero preempt_count or interrupts are disabled, * we do not want to preempt the current task. Just return.. */ if (likely(ti->preempt_count || irqs_disabled())) return; do { add_preempt_count_notrace(PREEMPT_ACTIVE); __schedule(); sub_preempt_count_notrace(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity * between schedule and now. */ barrier(); } while (need_resched()); }
可以看到这里进入函数起始,便对当前线程的preempt_count进行了判断,根据上面的介绍,当内核处理任何一个上下文中时,preempt_count均不可能为0,所以我们也可以根据此发现在软中断、硬件中断、禁止内核抢占、NMI上下文中均不允许调度。当然,我们看到后面后又个irqs_disabled,意味着如果当前禁用了硬件中断,则同样不会发生抢占调度。
补充:
关闭中断的实质是设置EFLAGS寄存器的IF标志位,STI指令可执行这一操作,当标志位被设置为1时,表示当前关闭中断状态。这里的中断指的是可屏蔽的硬件中断。
参考资料:
LInux3.10.1内核源码
LInux中ThreadInfo中的preempt_count字段