首页 > 代码库 > math1006_china
math1006_china
中国剩余定理介绍
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),
七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。
问题:除以3余2,除以5余3,除以7余2,求这个数
中国剩余定理分析
我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。
首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。
有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?
这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。
因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:
为使n1+n2+n3的和满足除以3余2,n1除以3余2,且是5和7的公倍数。
为使n1+n2+n3的和满足除以5余3,n2除以5余3,且是3和7的公倍数。
为使n1+n2+n3的和满足除以7余2,n3除以7余2,且是3和5的公倍数。
所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。
在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,
而是先找一个除以3余1的数,再乘以2。
这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),
最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?
我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。
道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。
总结
经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:
如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。
回到上面的问题上:除以3余2,除以5余3,除以7余2,求这个数
具体解法分三步:
找出三个数:从3和5的公倍数中找出被7除余1的最小数15,再乘以2得到30,从3和7的公倍数中找出被5除余1 的最小数21,再乘以3得到63,最后从5和7的公倍数中找出除3余1的最小数70,再乘以2,得到140.
然后把三个数相加(15*2+21*3+70*2)得到和233。
用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。
本题:
已知(n+d)%23=p; (n+d)%28=e; (n+d)%33=i
使33×28×a被23除余1,用33×28×8=5544;
使23×33×b被28除余1,用23×33×19=14421;
使23×28×c被33除余1,用23×28×2=1288。
因此有(5544×p+14421×e+1288×i)% lcm(23,28,33) =n+d
又23、28、33互质,即lcm(23,28,33)= 21252;
所以有n+d=(5544×p+14421×e+1288×i)%21252
本题所求的是最小整数解,避免n为负,因此最后结果为n= [n+21252]% 21252
那么最终求解n的表达式就是:
n=(5544*p+14421*e+1288*i+21252)%21252-d;
//Memory Time
//256K 94MS
#include<iostream>
using namespace std;
int main(void)
{
int p,e,i,d;
int time=1;
while(cin>>p>>e>>i>>d)
{
if(p==-1 && e==-1 && i==-1 && d==-1)
break;
int lcm=21252; // lcm(23,28,33)
int n=(5544*p+14421*e+1288*i+21252)%21252-d;
if(n<=0)
n+=21252;
cout<<"Case "<<time++<<": the next triple peak occurs in "<<n<<" days."<<endl;
}
return 0;
}
math1006_china