首页 > 代码库 > 任意阶幻方(魔方矩阵)C语言实现

任意阶幻方(魔方矩阵)C语言实现

魔方又称幻方、纵横图、九宫图,最早记录于我国古代的洛书。据说夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服。后人称之为"洛书"或"河图",又叫河洛图。
南宋数学家杨辉,在他著的《续古摘奇算法》里介绍了这种方法:只要将九个自然数按照从小到大的递增次序斜排,然后把上、下两数对调,左、右两数也对调;最后再把中部四数各向外面挺出,幻方就出现了。 (摘自《趣味数学辞典》)
在西方,阿尔布雷特·丢勒于1514年创作的木雕《忧郁》是最早关于魔方矩阵的记载。有学者认为,魔方矩阵和风靡一时的炼金术有关。几个世纪以来,魔方矩阵吸引了无数的学者和数学爱好者。本杰明·富兰克林就做过有关魔方矩阵的实验。
最简单的魔方就是平面魔方,还有立体魔方、高次魔方等。对于立体魔方、高次魔方世界上很多数学家仍在研究,本文只讨论平面魔方。
每行、每列及对角线之和被称为魔术常量或魔法总和,M。
其中,n为阶数。
例如,如果n=3,则M=[3*(3^2+1)]/2 = 15.

------------------来自百度

 

先标出引用地址:

http://blog.ddedu.com.cn/user1/88/archives/2007/2007420143329.shtml   //任意阶幻方构造方法

http://blog.csdn.net/cmutoo/article/details/5487157                                  //任意阶幻方C语言代码实现(有些许错误)

 

基础知识这里看:http://blog.csdn.net/oowgsoo/article/details/1567910

 

任意阶幻方的构造方法有很多种,所以要选定一种易于代码实现的一种

在上篇博客中说道:

/************************************************************************************

幻方的数量:
与我们大多数人的常识不同,幻方的数量不是唯一的,而且也不是一个简单的问题
3阶幻方只有1种
4阶幻方有880种,通过旋转和反射,总共可以有7040个幻方
5阶幻方有275 305 224个,这是用计算机算的
6阶幻方,大概是1.7743*10**19~1.7766*10**19之间,这是用统计学方法计算的,居然计算机也算不出来,更不要说6阶以上的幻方数量了

************************************************************************************/

所以代码实现的就有很大的局限性,只能实现某一种构造方法的幻方

幻方构造分为

1、奇数阶

2、双偶阶

3、单偶阶

三种。

对于奇数阶的幻方:

/*******************************************************************

n为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)
  奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样:
  把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数:
  (1)每一个数放在前一个数的右上一格;
  (2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;
  (3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;
  (4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;
  (5)如果这个数所要放的格已经有数填入,处理方法同(4)。
  这种写法总是先向“右上”的方向,象是在爬楼梯。
 
*******************************************************************/
其实在C语言实现时是有潜在的规律的,当要填的数为n的倍数时,说明所要放的格已经有数填入
实现过程也是很巧妙……
void Odd(int n,int index){    while(st != index)    {        cube[ox+stx][oy+sty] = st++;        if((st-1) % n != 0)        {            stx--;            sty++;        }        else        {            stx++;        }        stx = ((stx-1)%n+n)%n+1;        sty = (sty%n == 0 ? n : sty%n);    }}

对于双偶数阶的

就是一个中心对称

void DouEven(int n){    int i,j;    int st = 1;    for(i=1; i<=n; i++)    {        for(j=1; j<=n; j++)        {            cube[i][j] = st++;        }    }    int zx,zy,fx,fy;    for(i=4; i<=n*n; i+=4)    {        for(j=4; j<=n*n; j+=4)        {            zx=i-3,zy=j-3,fx=i,fy=j-3;            cube[zx][zy]=n*n-cube[zx][zy]+1;            cube[zx+1][zy+1]=n*n-cube[zx+1][zy+1]+1;            cube[zx+2][zy+2]=n*n-cube[zx+2][zy+2]+1;            cube[zx+3][zy+3]=n*n-cube[zx+3][zy+3]+1;            cube[fx][fy]=n*n-cube[fx][fy]+1;            cube[fx-1][fy+1]=n*n-cube[fx-1][fy+1]+1;            cube[fx-2][fy+2]=n*n-cube[fx-2][fy+2]+1;            cube[fx-3][fy+3]=n*n-cube[fx-3][fy+3]+1;        }    }}

对于单偶数阶的,麻烦许多

因为要用到奇数阶的构造方法

void SingleEven(int n){    int i,j;    ox=oy=0;st=1;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*1/4+1);    //A    ox=oy=n/2;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*2/4+1);    //D    ox=0,oy=n/2;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*3/4+1);    //B    ox=n/2,oy=0;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*4/4+1);    //C    int k=(n-2)/4,tmp;    for(j=1; j<=n/2; j++)    {        for(i=1; i<=k; i++)        {            if(j != (n/2+1)/2)            {                tmp = cube[j][i];                cube[j][i] = cube[j+n/2][i];                cube[j+n/2][i] = tmp;            }            else            {                tmp = cube[j][i+(n/2+1)/2-1];                cube[j][i+(n/2+1)/2-1] = cube[j+n/2][i+(n/2+1)/2-1];                cube[j+n/2][i+(n/2+1)/2-1] = tmp;            }        }    }    if(k-1)    {        for(i=1; i<=n/2; i++)        {            int tmpp = (3*n+2)/4-1;            for(j=1; j<=k-1; j++)            {                tmp = cube[i][j+tmpp];                cube[i][j+tmpp] = cube[i+n/2][j+tmpp];                cube[i+n/2][j+tmpp] = tmp;            }        }    }}

 

最后贴一个完整的代码:

#include <stdio.h>#include <string.h>int cube[1000][1000];int stx,sty;int st;int num;int ox,oy;void Odd(int n,int index){    while(st != index)    {        cube[ox+stx][oy+sty] = st++;        if((st-1) % n != 0)        {            stx--;            sty++;        }        else        {            stx++;        }        stx = ((stx-1)%n+n)%n+1;        sty = (sty%n == 0 ? n : sty%n);    }}void DouEven(int n){    int i,j;    int st = 1;    for(i=1; i<=n; i++)    {        for(j=1; j<=n; j++)        {            cube[i][j] = st++;        }    }    int zx,zy,fx,fy;    for(i=4; i<=n*n; i+=4)    {        for(j=4; j<=n*n; j+=4)        {            zx=i-3,zy=j-3,fx=i,fy=j-3;            cube[zx][zy]=n*n-cube[zx][zy]+1;            cube[zx+1][zy+1]=n*n-cube[zx+1][zy+1]+1;            cube[zx+2][zy+2]=n*n-cube[zx+2][zy+2]+1;            cube[zx+3][zy+3]=n*n-cube[zx+3][zy+3]+1;            cube[fx][fy]=n*n-cube[fx][fy]+1;            cube[fx-1][fy+1]=n*n-cube[fx-1][fy+1]+1;            cube[fx-2][fy+2]=n*n-cube[fx-2][fy+2]+1;            cube[fx-3][fy+3]=n*n-cube[fx-3][fy+3]+1;        }    }}void SingleEven(int n){    int i,j;    ox=oy=0;st=1;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*1/4+1);    //A    ox=oy=n/2;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*2/4+1);    //D    ox=0,oy=n/2;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*3/4+1);    //B    ox=n/2,oy=0;    stx=1,sty=(n/2+1)/2;    Odd(n/2,n*n*4/4+1);    //C    int k=(n-2)/4,tmp;    for(j=1; j<=n/2; j++)    {        for(i=1; i<=k; i++)        {            if(j != (n/2+1)/2)            {                tmp = cube[j][i];                cube[j][i] = cube[j+n/2][i];                cube[j+n/2][i] = tmp;            }            else            {                tmp = cube[j][i+(n/2+1)/2-1];                cube[j][i+(n/2+1)/2-1] = cube[j+n/2][i+(n/2+1)/2-1];                cube[j+n/2][i+(n/2+1)/2-1] = tmp;            }        }    }    if(k-1)    {        for(i=1; i<=n/2; i++)        {            int tmpp = (3*n+2)/4-1;            for(j=1; j<=k-1; j++)            {                tmp = cube[i][j+tmpp];                cube[i][j+tmpp] = cube[i+n/2][j+tmpp];                cube[i+n/2][j+tmpp] = tmp;            }        }    }}void print(int n){    int i,j;    for(i=1; i<=n; i++)    {        int sum = 0;        for(j=1; j<=n ; j++)        {            sum += cube[i][j];            printf("%4d",cube[i][j]);        }        printf("    sum = %d",sum);        printf("\n");    }}int main(){    int i,j,k,t,n,m;    do    {        printf("Please Input n(3-17): ");        scanf("%d",&n);        if(n<3)continue;        memset(cube,0,sizeof(cube));        if(n % 2 == 1)        {            stx=1,sty=(n+1)/2;            ox=oy=0;            st=1;            Odd(n,n*n+1);            print(n);        }        else if(n % 4 == 0)        {            DouEven(n);            print(n);        }        else if(n % 2 ==0 && n % 4 != 0)        {            SingleEven(n);            print(n);        }    }while(1);    return 0;}

再上一个专门关于介绍幻方的博客:http://blog.sina.com.cn/u/1225071715

 

任意阶幻方(魔方矩阵)C语言实现