首页 > 代码库 > leetcode第17题--4Sum
leetcode第17题--4Sum
Problem:Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
这题其实就是之前的变种,我是这样想的,首先还是排序好,然后根据固定四个的头和尾,即i为头,从0开始到倒数第四个,j为尾巴从尾开始到i+2. 再来一个left=i+1 right=j-1 如果i++之后和前面一个相等,那就直接continue,因为已经在之前一个i算过了,同理,j--之后如果和之前的j相等的话也是不用计算的直接continue 这样的话复杂度就是n3方
class Solution {public:vector<vector<int> > fourSum(vector<int> &num, int target){ vector<vector<int> > sum; sum.clear(); if(num.size() < 4) return sum; sort(num.begin(), num.end()); for (int i = 0; i < num.size() - 3; ++i) { if (i - 1 >=0 && num[i - 1] == num[i]) continue; for (int j = num.size() - 1; j > i + 2; --j) { if(j + 1 < num.size() && num[j + 1] == num[j]) continue; int left = i + 1, right = j - 1; while(left < right) { if (num[i] + num[left] + num[right] + num[j] == target) { if(sum.size()==0 || sum.size()>0 && !(sum[sum.size() - 1][0]==num[i] && sum[sum.size() - 1][1]==num[left] && sum[sum.size() - 1][2]==num[right])) { vector<int> tep; tep.push_back(num[i]); tep.push_back(num[left]); tep.push_back(num[right]); tep.push_back(num[j]); sum.push_back(tep); } left++; right--; } else if (num[i] + num[left] + num[right] + num[j] < target) left++; else if (num[i] + num[left] + num[right] + num[j] > target) right--; } } } return sum;}};
leetcode第17题--4Sum
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。