首页 > 代码库 > java的垃圾回收机制
java的垃圾回收机制
Java语言规范没有明确地说明JVM使用哪种垃圾回收算法,但是任何一种垃圾回收算法一般要做2件基本的事情:
(1)发现无用信息对象;
(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。
但垃圾回收器只知道那些显示地经由new分配的内存空间,它不知道该如何释放这块“特殊”的内存区域。特殊的区域例如:
1)由于在分配内存的时候可能采用了类似C语言的做法,而非JAVA的通常new做法。这种情况主要发生在native method中,比如native method调用了C/C++方法malloc()函数系列来分配存储空间,但是除非调用free()函数,否则这些内存空间将不会得到释放,那么这个时候就可能造成内存泄漏。但是由于free()方法是在C/C++中的函数,所以finalize()中可以用本地方法来调用它。以释放这些“特殊”的内存空间。
2)又或者打开的文件资源,这些资源不属于垃圾回收器的回收范围。
一、垃圾回收算法
1. 引用计数法(Reference Counting Collector)
使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1,而当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。
基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,适宜地必须实时运行的程序。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量,计数器加1,而每次现有对象出了作用域,计数器减1。
2. tracing算法(Tracing Collector)
tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器
注:大多数垃圾回收算法使用了根集(root set)这个概念,所谓根集就是正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量)。垃圾回收首先需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。
3. compacting算法(Compacting Collector)
为了解决堆碎片问题,基于tracing的垃圾回收吸收了Compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用在新的位置能识别原来的对象。在基于Compacting算法的收集器的实现中,一般增加句柄和句柄表。
4. copying算法(Coping Collector)
该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成一个对象区和多个空闲区,程序从对象区为对象分配空间,当对象满了,基于coping算法的垃圾回收就从根集中扫描活动对象,并将每个活动对象复制到空闲区(使得活动对象所占的内存之间没有空闲间隔),这样空闲区变成了对象区,原来的对象区变成了空闲区,程序会在新的对象区中分配内存。
一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象区和空闲区域区,在对象区与空闲区域的切换过程中,程序暂停执行。
5. generation算法(Generational Collector)
stop-and-copy垃圾收集器的一个缺陷是收集器必须复制所有的活动对象,这增加了程序等待时间,这是coping算法低效的原因。在程序设计中有这样的规律:多数对象存在的时间比较短,少数的存在时间比较长。因此,generation算法将堆分成两个或多个,每个子堆作为对象的一代 (generation)。由于多数对象存在的时间比较短,随着程序丢弃不使用的对象,垃圾收集器将从最年轻的子堆中收集这些对象。在分代式的垃圾收集器运行后,上次运行存活下来的对象移到下一最高代的子堆中,由于老一代的子堆不会经常被回收,因而节省了时间。
6. adaptive算法(Adaptive Collector)
在特定的情况下,一些垃圾收集算法会优于其它算法。基于Adaptive算法的垃圾收集器就是监控当前堆的使用情况,并将选择适当算法的垃圾收集器。
二、触发主GC(Garbage Collector)的条件
1)当应用程序空闲时,即没有应用线程在运行时,GC会被调用。因为GC在优先级最低的线程中进行,所以当应用忙时,GC线程就不会被调用,但以下条件除外。
2)Java堆内存不足时,GC会被调用。当应用线程在运行,并在运行过程中创建新对象,若这时内存空间不足,JVM就会强制地调用GC线程,以便回收内存用于新的分配。若GC一次之后仍不能满足内存分配的要求,JVM会再进行两次GC作进一步的尝试,若仍无法满足要求,则 JVM将报“out of memory”的错误,Java应用将停止。
由于是否进行主GC由JVM根据系统环境决定,而系统环境在不断的变化当中,所以主GC的运行具有不确定性,无法预计它何时必然出现,但可以确定的是对一个长期运行的应用来说,其主GC是反复进行的。
三、减少垃圾
虽然有GC机制,但GC本身也会带来一定的开销,所以我们原则上是要减少垃圾和减少GC的频率,主要措施如下:
1、尽量不要依赖System.gc()
调用System.gc()也仅仅是一个请求(建议)。JVM接受这个消息后,并不是立即做垃圾回收,而只是对几个垃圾回收算法做了加权,使垃圾回收操作容易发生,或提早发生,或回收较多而已。
2、尽量减少临时对象的使用
临时对象在跳出函数调用后,会成为垃圾,少用临时变量就相当于减少了垃圾的产生,从而延长了出现上述第二个触发条件出现的时间,减少了主GC的机会。
3、对象不用时最好显式置为null
一般而言,为Null的对象都会被作为垃圾处理,所以将不用的对象显式地设为Null,有利于GC收集器判定垃圾,从而提高了GC的效率。
4、避免使用String来累加字符串
如Str5=Str1+Str2+Str3+Str4,这条语句执行过程中会产生多个垃圾对象,因为对次作“+”操作时都必须创建新的String对象,但这些过渡对象对系统来说是没有实际意义的,只会增加更多的垃圾。避免这种情况可以改用StringBuilder来累加字符串,因StringBuilder是可变长的,它在原有基础上进行扩增,不会产生中间对象。
5、能用基本类型如Int,Long,就不用Integer,Long对象
基本类型变量占用的内存资源比相应对象占用的少得多,如果没有必要,最好使用基本变量。
6、尽量少用静态对象变量
静态变量属于全局变量,不会被GC回收,它们会一直占用内存。
7、分散对象创建或删除的时间
集中在短时间内大量创建新对象,特别是大对象,会导致突然需要大量内存,JVM在面临这种情况时,只能进行主GC,以回收内存或整合内存碎片,从而增加主GC的频率。集中删除对象,道理也是一样的。它使得突然出现了大量的垃圾对象,空闲空间必然减少,从而大大增加了下一次创建新对象时强制主GC的机会。
参考原文:http://blog.csdn.net/zsuguangh/article/details/6429592/
java的垃圾回收机制