首页 > 代码库 > BZOJ 1867 NOI1999 钉子和小球 动态规划
BZOJ 1867 NOI1999 钉子和小球 动态规划
题目大意:给定一个钉子阵,小球从最上方的钉子释放,求到达最底端某个位置的概率
只需要DP就好了 f[i][j]表示小球落在第i行第j个钉子上的概率
如果一个点有钉子 f[i+1][j]和f[i+1][j+1]平分这个点的概率
如果一个点没有钉子 f[i+2][j+1]得到这个点的全部概率
最后输出f[n+1][m+1]即可 注意不能输出回车 否则PE
无视这凶残的结构体操作符重载吧0.0
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 60 using namespace std; typedef long long ll; struct fraction{ ll numerator,denominator; fraction(ll _=0,ll __=1):numerator(_),denominator(__){} }f[M][M]; ll GCD(ll x,ll y) { return y?GCD(y,x%y):x; } void Reduction(fraction &x) { ll gcd=GCD(x.numerator,x.denominator); x.numerator/=gcd; x.denominator/=gcd; } fraction operator + (const fraction &x,const fraction &y) { fraction z; ll gcd=GCD(x.denominator,y.denominator); z.denominator=x.denominator/gcd*y.denominator; z.numerator=x.numerator*(y.denominator/gcd)+y.numerator*(x.denominator/gcd); Reduction(z); return z; } fraction operator * (const fraction &x,const fraction &y) { fraction z(x.numerator*y.numerator,x.denominator*y.denominator); Reduction(z); return z; } void operator += (fraction &x,const fraction &y) { x=x+y; } ostream& operator << (ostream &os,const fraction &x) { os<<x.numerator<<'/'<<x.denominator; return os; } char Get_Char() { char c; do c=getchar(); while(c==' '||c=='\n'||c=='\r'||c=='\t'); return c; } int n,m; char map[M][M]; int main() { int i,j; cin>>n>>m; for(i=1;i<=n;i++) for(j=1;j<=i;j++) map[i][j]=Get_Char(); f[1][1]=fraction(1,1); for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(map[i][j]=='*') f[i+1][j]+=f[i][j]*fraction(1,2),f[i+1][j+1]+=f[i][j]*fraction(1,2); else f[i+2][j+1]+=f[i][j]; cout<<f[n+1][m+1]; }
BZOJ 1867 NOI1999 钉子和小球 动态规划
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。