首页 > 代码库 > python int 内部功能剖析

python int 内部功能剖析

在python中,一切都是对象!对象由类创建而来,对象所拥有的功能都来自于类。在本节中,我们了解一下int类型对象具有哪些功能,我们平常是怎么使用的。

int 类源码分析

技术分享
class int(object):    """    int(x=0) -> int or long    int(x, base=10) -> int or long    Convert a number or string to an integer, or return 0 if no arguments    are given.  If x is floating point, the conversion truncates towards zero.    If x is outside the integer range, the function returns a long instead.    If x is not a number or if base is given, then x must be a string or    Unicode object representing an integer literal in the given base.  The    literal can be preceded by ‘+‘ or ‘-‘ and be surrounded by whitespace.    The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to    interpret the base from the string as an integer literal.    >>> int(‘0b100‘, base=0)    4    """    def bit_length(self): # real signature unknown; restored from __doc__        """        int.bit_length() -> int        Number of bits necessary to represent self in binary.        >>> bin(37)        ‘0b100101‘        >>> (37).bit_length()        6        """        return 0    def conjugate(self, *args, **kwargs): # real signature unknown        """ Returns self, the complex conjugate of any int. """        pass    def __abs__(self): # real signature unknown; restored from __doc__        """ x.__abs__() <==> abs(x) """        pass    def __add__(self, y): # real signature unknown; restored from __doc__        """ x.__add__(y) <==> x+y """        pass    def __and__(self, y): # real signature unknown; restored from __doc__        """ x.__and__(y) <==> x&y """        pass    def __cmp__(self, y): # real signature unknown; restored from __doc__        """ x.__cmp__(y) <==> cmp(x,y) """        pass    def __coerce__(self, y): # real signature unknown; restored from __doc__        """ x.__coerce__(y) <==> coerce(x, y) """        pass    def __divmod__(self, y): # real signature unknown; restored from __doc__        """ x.__divmod__(y) <==> divmod(x, y) """        pass    def __div__(self, y): # real signature unknown; restored from __doc__        """ x.__div__(y) <==> x/y """        pass    def __float__(self): # real signature unknown; restored from __doc__        """ x.__float__() <==> float(x) """        pass    def __floordiv__(self, y): # real signature unknown; restored from __doc__        """ x.__floordiv__(y) <==> x//y """        pass    def __format__(self, *args, **kwargs): # real signature unknown        pass    def __getattribute__(self, name): # real signature unknown; restored from __doc__        """ x.__getattribute__(‘name‘) <==> x.name """        pass    def __getnewargs__(self, *args, **kwargs): # real signature unknown        pass    def __hash__(self): # real signature unknown; restored from __doc__        """ x.__hash__() <==> hash(x) """        pass    def __hex__(self): # real signature unknown; restored from __doc__        """ x.__hex__() <==> hex(x) """        pass    def __index__(self): # real signature unknown; restored from __doc__        """ x[y:z] <==> x[y.__index__():z.__index__()] """        pass    def __init__(self, x, base=10): # known special case of int.__init__        """        int(x=0) -> int or long        int(x, base=10) -> int or long        Convert a number or string to an integer, or return 0 if no arguments        are given.  If x is floating point, the conversion truncates towards zero.        If x is outside the integer range, the function returns a long instead.        If x is not a number or if base is given, then x must be a string or        Unicode object representing an integer literal in the given base.  The        literal can be preceded by ‘+‘ or ‘-‘ and be surrounded by whitespace.        The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to        interpret the base from the string as an integer literal.        >>> int(‘0b100‘, base=0)        4        # (copied from class doc)        """        pass    def __int__(self): # real signature unknown; restored from __doc__        """ x.__int__() <==> int(x) """        pass    def __invert__(self): # real signature unknown; restored from __doc__        """ x.__invert__() <==> ~x """        pass    def __long__(self): # real signature unknown; restored from __doc__        """ x.__long__() <==> long(x) """        pass    def __lshift__(self, y): # real signature unknown; restored from __doc__        """ x.__lshift__(y) <==> x<<y """        pass    def __mod__(self, y): # real signature unknown; restored from __doc__        """ x.__mod__(y) <==> x%y """        pass    def __mul__(self, y): # real signature unknown; restored from __doc__        """ x.__mul__(y) <==> x*y """        pass    def __neg__(self): # real signature unknown; restored from __doc__        """ x.__neg__() <==> -x """        pass    @staticmethod # known case of __new__    def __new__(S, *more): # real signature unknown; restored from __doc__        """ T.__new__(S, ...) -> a new object with type S, a subtype of T """        pass    def __nonzero__(self): # real signature unknown; restored from __doc__        """ x.__nonzero__() <==> x != 0 """        pass    def __oct__(self): # real signature unknown; restored from __doc__        """ x.__oct__() <==> oct(x) """        pass    def __or__(self, y): # real signature unknown; restored from __doc__        """ x.__or__(y) <==> x|y """        pass    def __pos__(self): # real signature unknown; restored from __doc__        """ x.__pos__() <==> +x """        pass    def __pow__(self, y, z=None): # real signature unknown; restored from __doc__        """ x.__pow__(y[, z]) <==> pow(x, y[, z]) """        pass    def __radd__(self, y): # real signature unknown; restored from __doc__        """ x.__radd__(y) <==> y+x """        pass    def __rand__(self, y): # real signature unknown; restored from __doc__        """ x.__rand__(y) <==> y&x """        pass    def __rdivmod__(self, y): # real signature unknown; restored from __doc__        """ x.__rdivmod__(y) <==> divmod(y, x) """        pass    def __rdiv__(self, y): # real signature unknown; restored from __doc__        """ x.__rdiv__(y) <==> y/x """        pass    def __repr__(self): # real signature unknown; restored from __doc__        """ x.__repr__() <==> repr(x) """        pass    def __rfloordiv__(self, y): # real signature unknown; restored from __doc__        """ x.__rfloordiv__(y) <==> y//x """        pass    def __rlshift__(self, y): # real signature unknown; restored from __doc__        """ x.__rlshift__(y) <==> y<<x """        pass    def __rmod__(self, y): # real signature unknown; restored from __doc__        """ x.__rmod__(y) <==> y%x """        pass    def __rmul__(self, y): # real signature unknown; restored from __doc__        """ x.__rmul__(y) <==> y*x """        pass    def __ror__(self, y): # real signature unknown; restored from __doc__        """ x.__ror__(y) <==> y|x """        pass    def __rpow__(self, x, z=None): # real signature unknown; restored from __doc__        """ y.__rpow__(x[, z]) <==> pow(x, y[, z]) """        pass    def __rrshift__(self, y): # real signature unknown; restored from __doc__        """ x.__rrshift__(y) <==> y>>x """        pass    def __rshift__(self, y): # real signature unknown; restored from __doc__        """ x.__rshift__(y) <==> x>>y """        pass    def __rsub__(self, y): # real signature unknown; restored from __doc__        """ x.__rsub__(y) <==> y-x """        pass    def __rtruediv__(self, y): # real signature unknown; restored from __doc__        """ x.__rtruediv__(y) <==> y/x """        pass    def __rxor__(self, y): # real signature unknown; restored from __doc__        """ x.__rxor__(y) <==> y^x """        pass    def __str__(self): # real signature unknown; restored from __doc__        """ x.__str__() <==> str(x) """        pass    def __sub__(self, y): # real signature unknown; restored from __doc__        """ x.__sub__(y) <==> x-y """        pass    def __truediv__(self, y): # real signature unknown; restored from __doc__        """ x.__truediv__(y) <==> x/y """        pass    def __trunc__(self, *args, **kwargs): # real signature unknown        """ Truncating an Integral returns itself. """        pass    def __xor__(self, y): # real signature unknown; restored from __doc__        """ x.__xor__(y) <==> x^y """        pass    denominator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default    """the denominator of a rational number in lowest terms"""    imag = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default    """the imaginary part of a complex number"""    numerator = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default    """the numerator of a rational number in lowest terms"""    real = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default    """the real part of a complex number"""
class int(object)

常用方法已被python作为内置函数或语法堂,我们可以直接使用,但是他们的关系其实是调用的关系!

""" x.__add__(y) <==> x+y """
""" x.__sub__(y) <==> x-y """
""" x.__mul__(y) <==> x*y """
""" x.__mod__(y) <==> x%y """
""" x.__div__(y) <==> x/y """
""" x.__and__(y) <==> x&y """
""" x.__int__() <==> int(x) """
""" x.__abs__() <==> abs(x) """
""" x.__divmod__(y) <==> divmod(x, y) """

平常我们使用x+y 时,实际python内部是先创建x对象,然后调用x对象的__add__方法

 

python int 内部功能剖析