首页 > 代码库 > 葡萄城程序设计大赛

葡萄城程序设计大赛

                        科学计算器

一开发平台

  基于windows 7 +Eclipse开发,采用Java语言编码。

 

二模块及算法

  软件简介:自动解析计算表达式,并进行运算返回结果的一个科学计算器程序。 

  ①输入和输出 

    科学计算器的输入为一个类似于“SQRT(1+2)”形式的表达式的字符串,该输入对应的   运算结果为3的平方根。输出结果为一个表示运算结果的字符串,比如说 “1.7320508075688773” 

  ②关于输入 

  输入表达式包含以下类型: 数值常量 ,运算符号 ,数值常量 包括正数和负数。 

    运算符号 

    支持普通的四则运算符号,包括+-*/,分别对应加减乘除运算 

    支持模除和乘方运算符号,形如 ”x mod y” 以及 “x ^ y”。 

支持括号运算符,用作改变运算优先级,例如 ”1 * (2 + 4)” 

数组仅作为参数形式出现在函数参数中,数组由一组数值常量或者

    表达式组成,由逗号”,” 分隔,并使用方括号”[]”做为数组的界限标记。

  ③功能函数

   1.三角函数,双曲函数和反三角函数 

       public static double sin(doubie a)//返回角的三角正弦

       public static double cos(doubie a)//返回角的三角余弦

       public static double tan(doubie a)//返回角的三角正切

       public static double asin(doubie a)//返回一个值的反正弦

       public static double acos(doubie a)//返回一个值的反余弦

       public static double atan(doubie a)//返回一个值的反正切

       public static double toRadians(doubie angdeg)//将角度转换为弧度

       public static double toDegrees(doubie angrad)//将弧度转换为角度

 

· 2.模除运算 

     

Java中模运算是用一个操作数-另一个操作数,直到前面的操作数值小于后一个操     作数值为止,//10-2.1 ——》7.9-2.1——》5.8-2.1——》3.7-2.1——》1.6,结果为1.6  System.out.println(10%2.1); Java中,模运算的符号位取决于前一个操作数,不管后一个操作数的符号 结构为:前一个操作数的符号 前一个操作数的绝对值%后一个操作数的绝对值 System.out.println(10%-3);   //1  System.out.println(-10%-3);  //-1  

  3 指数运算

      int y=1,i=0;
      if(b=0)
      y=1;
      for(i=1;i<=b;i++)
      y=y*x;
      printf("y=%d\n",y);

·4.开方运算 

     BigInteger b=new BigInteger(num);

  

  if(b.compareTo(BigInteger.ZERO)<0)

  return "不是正数";

  String sqrt="0"; //开方结果

  String pre="0"; //开方过程中需要计算的被减数

  BigInteger trynum; //试商,开放过程中需要计算的减数

  BigInteger flag;  //试商,得到满足要求减数的之后一个数

  BigInteger twenty=new BigInteger("20"); //就是20

  BigInteger dividend; ///开方过程中需要计算的被减数

  int len=num.length(); //数字的长度

  if(len%2==0) //长度为偶数

  {

  for(int i=0;i<len/2;++i) //得到的平方根一定是len/2位

  {

  dividend=new BigInteger(pre+num.substring(2*i,2*i+2));

  for(int j=0;j<=9;++j)

  {

  trynum=twenty.multiply(new BigInteger(sqrt)).multiply(new BigInteger(j+"")).add(new BigInteger(j+"").multiply(new BigInteger(j+"")));

  flag=twenty.multiply(new BigInteger(sqrt)).multiply(new BigInteger((j+1)+"")).add(new BigInteger((j+1)+"").multiply(new BigInteger((j+1)+"")));;

  //满足要求的j使得试商与计算中的被减数之差为最小正数

  if(trynum.subtract(dividend).compareTo(BigInteger.ZERO)<=0

  &&flag.subtract(dividend).compareTo(BigInteger.ZERO)>0)

  {

  sqrt+=j;  //结果加上得到的j

  pre=dividend.subtract(trynum).toString(); //更新开方过程中需要计算的被减数

  break;

  }

 

   5.求给定值 x 的常用对数:log10(x) 

·   求给定值 x 的自然对数:ln(x) 

     logx(y) =loge(x) / loge(y)
    public double log(double value, double base) {
       return Math.log(value) / Math.log(base);
   }
  计算100的以10为底的对数就变为非常简单了:
  double log = Logarithm.log(100, 10); // log is 2.0
   512的以2为底的对数是:
   double log = Logarithm.log(512, 2); // log is 9.0
  
  static public double log2(double value) {
   return log(value, 2.0);
   }
   static public double log10(double value) {
   return log(value, 10.0);
   } 

   6.阶乘运算

java中提供了两个拥有高精度计算了类:BigInteger和BigDecimal

 

BigInteger:支持任意精度的整数运算

 

BigDecimal:支持任意精度的定点数,可以进行精确的货币计算

for (int i = 1; i <= SUM; i++) {

              // new BigDecimal("乘数").multiply(new BigDecimal(“因子")).toString();

BigDecimal   stra =new BigDecimal(s);

BigDecimal end = new BigDecimal(s); //将s转为BigDecimal

BigDecimal re = end.multiply(stra); //end*stra

s = re.toString(); //重新赋值给s

 

统计函数 

· 

 集合的算术平均值:avg([…]) 

集合的统计:sum([…]) 

 while(reader.hasNextDouble()){  

        double x=reader.nextDouble();  

        try{  

            if(x<0||x>100)  

            x=Integer.parseInt("x<0||x>100");  

            else{  

                m=m+1;  

                sum=sum+x;  

            }  

        }  

 

· 

· 集合的估算方差:var([…]) 

· 集合的总体方差:varp([…]) 

   因为样本的个数总是的在不断变化的,确切将是不断递增;如果每次增加,都要重新计算平均值,再按次公式,计算出方差;通过n-1个样本时的方差值,和新增的样本,就能得到此时这N个样本的方差;这样计算量不会变同时保持在一个很小的值,可大大提高程序的计算效率。递推公式如下:

      Mn = Mn-1+ (xn - Mn-1)/n


      Sn = Sn-1 + (xn - Mn-1)*(xn - Mn)

      Mn为平均值,初始时: M1 = x1,  S1 = 0 (此等式的推导证明,我后面给出),而样本方差 s =Sn/(n - 1)

 private int count;// 样本的个数 

    private double mk;// 平均值 

06     private double sk;// Sn 

07     private double runVar;// 样本方差 

08   

09     public RunningVariance() { 

10         this(0, 0.0, 0.0); 

11     } 

12   

13     public RunningVariance(int count, double mk, double sk) { 

14         this.count = count; 

15         this.mk = mk; 

16         this.sk = sk; 

17         recomputeRunVar(); 

18     } 

19   

20     public double getMk() { 

21         return mk; 

22     } 

23   

24     public double getSk() { 

25         return sk; 

26     } 

27   

28   

29      * 获取运行时样本方差 

30    

31     

32      

33     public synchronized double getRunningVariance() { 

34         return runVar; 

35     } 

36   

37   

38    增加样本 

39    

40     

41     

42     public synchronized void addSample(double sample) { 

43         if (++count == 1) { 

44             mk = sample; 

45             sk = 0.0; 

46         } else { 

47             double oldmk = mk; 

48             double diff = sample - oldmk; 

49             mk += diff / count; 

50             sk += diff * (sample - mk); 

51         } 

52         recomputeRunVar(); 

53     } 

54   

55  

56       移除样本 

57        

58      

59      

60     public synchronized void removeSample(double sample) { 

61         int oldCount = getCount(); 

62         double oldmk = mk; 

63         if (oldCount == 0) { 

64             throw new IllegalStateException(); 

65         } 

66         if (--count == 0) { 

67             mk = Double.NaN; 

68             sk = Double.NaN; 

69         } else { 

70             mk = (oldCount * oldmk - sample) / (oldCount - 1); 

71             sk -= (sample - mk) * (sample - oldmk); 

72         } 

73         recomputeRunVar(); 

74     } 

75   

76     private synchronized void recomputeRunVar() { 

77         int count = getCount(); 

78         runVar = count > 1 ? sk / (count - 1) : Double.NaN; 

79         // 若需要计算标准差 

80         // runVar = count > 1 ? Math.sqrt(sk / (count - 1)) : Double.NaN; 

81     } 

82   

83     public synchronized int getCount() { 

84         return count; 

85     } 

 

· 集合的估算标准差:stdev([…]) 

· 集合的总体标准偏差:stdevp([…]) 

   中间数据缓存器MC/MR/MS/M+/M-:M表示Memory,是指一个中间数据缓存器,MC=Memory Clear, MR=Memory Read, MS=Memory Save, M+=Memory Add, M-=Memory inus,可以用一个例子来演示:(7-2) * (8-2)= 先输入7,按MS保存,输入2,按M-与缓存器中的7相减,此时缓存器中的值为5;然后计算8-2,得出结果为6,输入*相乘,按MR读出之前保存的数5,按=得出结果30,算完后按MC清除缓存器

统计模式,这是一种完全不同的计算模式,你不再逐次的输入数据与操作符而得到一个结果,而是先输入一系列已知的数据,然后计算各种统计数据(注意,这里清除之前输入的一组数据的按钮为CAD)。支持的统计数据包括平均值、平方平均值,和,平方和,还有就是标准差(standard deviation),标准差是方差的平方根,用来表示一组数据的离散程度。这里提供了两种标准差的计算方式:

:总体标准差(population standard deviation),其在计算方差的过程当中是除以n的。

:样本标准差(sample standard deviation),其在计算方差的过程中式除以n-1的