首页 > 代码库 > SQL to MongoDB Mapping Chart

SQL to MongoDB Mapping Chart

http://docs.mongodb.org/manual/reference/sql-comparison/

In addition to the charts that follow, you might want to consider the Frequently Asked Questions section for a selection of common questions about MongoDB.

Terminology and Concepts

The following table presents the various SQL terminology and concepts and the corresponding MongoDB terminology and concepts.

SQL Terms/ConceptsMongoDB Terms/Concepts
databasedatabase
tablecollection
rowdocument or BSON document
columnfield
indexindex
table joinsembedded documents and linking

primary key

Specify any unique column or column combination as primary key.

primary key

In MongoDB, the primary key is automatically set to the _id field.

aggregation (e.g. group by)

aggregation pipeline

See the SQL to Aggregation Mapping Chart.

Executables

The following table presents some database executables and the corresponding MongoDB executables. This table is not meant to be exhaustive.

 MongoDBMySQLOracleInformixDB2
Database ServermongodmysqldoracleIDSDB2 Server
Database ClientmongomysqlsqlplusDB-AccessDB2 Client

Examples

The following table presents the various SQL statements and the corresponding MongoDB statements. The examples in the table assume the following conditions:

  • The SQL examples assume a table named users.

  • The MongoDB examples assume a collection named users that contain documents of the following prototype:

    {  _id: ObjectId("509a8fb2f3f4948bd2f983a0"),  user_id: "abc123",  age: 55,  status: ‘A‘}

Create and Alter

The following table presents the various SQL statements related to table-level actions and the corresponding MongoDB statements.

SQL Schema StatementsMongoDB Schema Statements
CREATE TABLE users (    id MEDIUMINT NOT NULL        AUTO_INCREMENT,    user_id Varchar(30),    age Number,    status char(1),    PRIMARY KEY (id))

Implicitly created on first insert() operation. The primary key _id is automatically added if _id field is not specified.

db.users.insert( {    user_id: "abc123",    age: 55,    status: "A" } )

However, you can also explicitly create a collection:

db.createCollection("users")
ALTER TABLE usersADD join_date DATETIME

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can add fields to existing documents using the $set operator.

db.users.update(    { },    { $set: { join_date: new Date() } },    { multi: true })
ALTER TABLE usersDROP COLUMN join_date

Collections do not describe or enforce the structure of its documents; i.e. there is no structural alteration at the collection level.

However, at the document level, update() operations can remove fields from documents using the $unset operator.

db.users.update(    { },    { $unset: { join_date: "" } },    { multi: true })
CREATE INDEX idx_user_id_ascON users(user_id)
db.users.ensureIndex( { user_id: 1 } )
CREATE INDEX       idx_user_id_asc_age_descON users(user_id, age DESC)
db.users.ensureIndex( { user_id: 1, age: -1 } )
DROP TABLE users
db.users.drop()

For more information, see db.collection.insert(), db.createCollection(), db.collection.update(), $set, $unset, db.collection.ensureIndex(), indexes, db.collection.drop(), and Data Modeling Concepts.

Insert

The following table presents the various SQL statements related to inserting records into tables and the corresponding MongoDB statements.

SQL INSERT StatementsMongoDB insert() Statements
INSERT INTO users(user_id,                  age,                  status)VALUES ("bcd001",        45,        "A")
db.users.insert(   { user_id: "bcd001", age: 45, status: "A" })

For more information, see db.collection.insert().

Select

The following table presents the various SQL statements related to reading records from tables and the corresponding MongoDB statements.

SQL SELECT StatementsMongoDB find() Statements
SELECT *FROM users
db.users.find()
SELECT id,       user_id,       statusFROM users
db.users.find(    { },    { user_id: 1, status: 1 })
SELECT user_id, statusFROM users
db.users.find(    { },    { user_id: 1, status: 1, _id: 0 })
SELECT *FROM usersWHERE status = "A"
db.users.find(    { status: "A" })
SELECT user_id, statusFROM usersWHERE status = "A"
db.users.find(    { status: "A" },    { user_id: 1, status: 1, _id: 0 })
SELECT *FROM usersWHERE status != "A"
db.users.find(    { status: { $ne: "A" } })
SELECT *FROM usersWHERE status = "A"AND age = 50
db.users.find(    { status: "A",      age: 50 })
SELECT *FROM usersWHERE status = "A"OR age = 50
db.users.find(    { $or: [ { status: "A" } ,             { age: 50 } ] })
SELECT *FROM usersWHERE age > 25
db.users.find(    { age: { $gt: 25 } })
SELECT *FROM usersWHERE age < 25
db.users.find(   { age: { $lt: 25 } })
SELECT *FROM usersWHERE age > 25AND   age <= 50
db.users.find(   { age: { $gt: 25, $lte: 50 } })
SELECT *FROM usersWHERE user_id like "%bc%"
db.users.find( { user_id: /bc/ } )
SELECT *FROM usersWHERE user_id like "bc%"
db.users.find( { user_id: /^bc/ } )
SELECT *FROM usersWHERE status = "A"ORDER BY user_id ASC
db.users.find( { status: "A" } ).sort( { user_id: 1 } )
SELECT *FROM usersWHERE status = "A"ORDER BY user_id DESC
db.users.find( { status: "A" } ).sort( { user_id: -1 } )
SELECT COUNT(*)FROM users
db.users.count()

or

db.users.find().count()
SELECT COUNT(user_id)FROM users
db.users.count( { user_id: { $exists: true } } )

or

db.users.find( { user_id: { $exists: true } } ).count()
SELECT COUNT(*)FROM usersWHERE age > 30
db.users.count( { age: { $gt: 30 } } )

or

db.users.find( { age: { $gt: 30 } } ).count()
SELECT DISTINCT(status)FROM users
db.users.distinct( "status" )
SELECT *FROM usersLIMIT 1
db.users.findOne()

or

db.users.find().limit(1)
SELECT *FROM usersLIMIT 5SKIP 10
db.users.find().limit(5).skip(10)
EXPLAIN SELECT *FROM usersWHERE status = "A"
db.users.find( { status: "A" } ).explain()

For more information, see db.collection.find(), db.collection.distinct(), db.collection.findOne(), $ne $and, $or, $gt, $lt, $exists, $lte, $regex, limit(), skip(), explain(), sort(), and count().

Update Records

The following table presents the various SQL statements related to updating existing records in tables and the corresponding MongoDB statements.

SQL Update StatementsMongoDB update() Statements
UPDATE usersSET status = "C"WHERE age > 25
db.users.update(   { age: { $gt: 25 } },   { $set: { status: "C" } },   { multi: true })
UPDATE usersSET age = age + 3WHERE status = "A"
db.users.update(   { status: "A" } ,   { $inc: { age: 3 } },   { multi: true })

For more information, see db.collection.update(), $set, $inc, and $gt.

Delete Records

The following table presents the various SQL statements related to deleting records from tables and the corresponding MongoDB statements.

SQL Delete StatementsMongoDB remove() Statements
DELETE FROM usersWHERE status = "D"
db.users.remove( { status: "D" } )
DELETE FROM users
db.users.remove({})

For more information, see db.collection.remove().