首页 > 代码库 > 困境:经典ICP算法的一些问题

困境:经典ICP算法的一些问题

因为学校项目的原因,可能要实现一个三维场景重建的功能,然后从经典的ICP算法开始,啃了很多文档,对其原理也是一知半解。

 

迭代最近点算法综述

大致参考了这份文档之后,照着流程用MATLAB实现了一个简单的ICP算法,首先是发现这份文档中一个明显的错误,

公式6

 

求两个点集的协方差,其中(Pi-p)和(Qi-p‘)分别求两个点集的各点与重心的差,都是(3*1)向量,这是不能相乘的,根据后文推断,此物的结果应为(3*3)矩阵,所以我大(zuo)胆(si)的改为(Pi-p)‘ * (Qi-p‘),做一次尝试。

 

Matlab代码如下:

%%% ICP迭代最近点算法function [sourcePoint,aimPoint,distance] = ICPiterator( sourcePoint , targetPoint )%%% 获得匹配点集,重心aimPoint = getAimPoint(sourcePoint,targetPoint);sourcePointCentre = getCentre(sourcePoint);aimPointCentre = getCentre(aimPoint);%%% 平移矩阵T = getTranslation(aimPointCentre,sourcePointCentre);%%% 中心化midSourcePoint = centreTransform(sourcePoint, sourcePointCentre);midAimPoint = centreTransform(aimPoint, aimPointCentre);%%%旋转四元数quaternion = getRevolveQuaternion(midSourcePoint,midAimPoint);%%%旋转矩阵revolveMatrix = getRevolveMatrix(quaternion);%%%变换sourcePoint = midSourcePoint * revolveMatrix;sourcePoint = counterCentreTransform(sourcePoint,sourcePointCentre);range = length(sourcePoint);for i = 1:1:range    sourcePoint(i,:) = sourcePoint(i,:) + T;end%%%阈值判定,欧拉距离和distance = getDistance(sourcePoint,aimPoint);    end%%% 点对搜索匹配,得到匹配点集function [aimPoint] = getAimPoint( sourcePoint , targetPoint ) rangeS = length(sourcePoint );rangeT = length(targetPoint);aimPoint = zeros(rangeS,3);for i = 1:1:rangeS    minDistance = getDistance(sourcePoint(i,:),targetPoint(1,:));    aimPoint(i,:) = targetPoint(1,:);    for j = 1:1:rangeT        distance = getDistance(sourcePoint(i,:),targetPoint(j,:));        if distance < minDistance            minDistance = distance;            aimPoint(i,:) = targetPoint(j,:);        end    endendend%%%旋转四元数function [quaternion] = getRevolveQuaternion( sourcePoint , targetPoint )    %%% 协方差    pp = sourcePoint‘ * targetPoint;    range = size(sourcePoint,1);    pp = pp / range;        %%% 反对称矩阵    dissymmetryMatrix = pp - pp‘ ;        %%% 列向量delta    delta = [dissymmetryMatrix(2,3) ; dissymmetryMatrix(3,1) ; dissymmetryMatrix(1,2)];        %%%对称矩阵Q    Q = [ trace(pp) delta‘ ; delta   pp + pp‘ - trace(pp)*eye(3) ];        %%%最大特征值,对应特征向量即为旋转四元数    maxEigenvalues = max(eig(Q));    quaternion = null(Q - maxEigenvalues*eye(length(Q)));end%%% 旋转矩阵function [revolveMatrix] = getRevolveMatrix(quaternion)    revolveMatrix = [ quaternion(1,1)^2 + quaternion(2,1)^2 - quaternion(3,1)^2 - quaternion(4,1)^2    2 * (quaternion(2,1)*quaternion(3,1) - quaternion(1,1)*quaternion(4,1))  2 * (quaternion(2,1)*quaternion(4,1) + quaternion(1,1)*quaternion(3,1));                        2 * (quaternion(2,1)*quaternion(3,1) + quaternion(1,1)*quaternion(4,1))    quaternion(1,1)^2 - quaternion(2,1)^2 + quaternion(3,1)^2 - quaternion(4,1)^2     2 * (quaternion(3,1)*quaternion(4,1) - quaternion(1,1)*quaternion(2,1));                        2 * (quaternion(2,1)*quaternion(4,1) - quaternion(1,1)*quaternion(3,1))  2 * (quaternion(3,1)*quaternion(4,1) + quaternion(1,1)*quaternion(2,1))   quaternion(1,1)^2 - quaternion(2,1)^2 - quaternion(3,1)^2 + quaternion(4,1)^2  ];end%%% 点集重心function [centre] = getCentre( point )    range = length(point);    centre = sum(point)/range;end%%% 获取平移矩阵function [T] = getTranslation( aimPointCentre , sourcePointCentre )    T = aimPointCentre - sourcePointCentre;end%%% 点集中心化function [point] = centreTransform(point,centre)range = size(point,1);for i = 1:1:range    point(i,:) = point(i,:) - centre;    endendfunction [point] = counterCentreTransform(point,centre)range = size(point,1);for i = 1:1:range    point(i,:) = point(i,:) + centre;    endend%%% 计算两点距离的平方,即欧拉距离和function [distance] = getDistance(point1,point2)    distance = (point1(1,1) - point2(1,1))^2 + (point1(1,2) - point2(1,2))^2 + (point1(1,3) - point2(1,3))^2;end    

 

为了看到迭代过程,这段代码每次只是进行一次迭代,但是实际情况下需要不断迭代,直到两点集的方差收敛,达到拟合要求。

 

用随机数生成了一个含一百个点的点集A,并对A进行一次随机的空间变化,得到B,这样A,B是完全可以拟合的两个点集;

 

点集A:

 

点集B:

 

用A,B来验证算法能不能实现点集的拟合。

 

试验了几次之后,发现无法收敛:

 

问题应该出在旋转四元数和旋转矩阵求解上,这块是一直没能理解透彻的部分。