首页 > 代码库 > As long as Binbin loves Sangsang

As long as Binbin loves Sangsang

题目连接 

  • 题意:
    给定一个无向图,每个边有两个属性,长度和一个字母‘L‘,’O‘,‘V’,‘E‘中的一个。从1点开始到达n点,每次必须按照L -> O -> V -> E -> ... -> E的顺序,到达终点时候必须经过E边
  • 分析:
    对于这种对边的限制,比较简单的方法是将一个点拆成若干个点。因为经过’L‘到达点p的状态和经过‘O‘到达点p的状态时不一样的,第一个之后只能经过’O‘边,而第二个只能经过‘V‘边,所以经过不同的边到达同一个点的时候对应的状态应该分开,也就是将点拆分成四个点,分别表示经过四种边到达p点。
  • 注意:
    图可以有自环,也可以只有一个点
    路径必须至少有一个LOVE
    路径长度尽可能小,长度若相等,那么LOVE的数量尽可能多
Dijkstra方法:(一个点的时候直接特判,避免不必要的麻烦)
const LL INF = 1e18;
const int MAXV = 10000;

struct Edge
{
    LL from, to, dist;
};

struct HeapNode
{
    LL d, u, num;
    bool operator < (const HeapNode& rhs) const
    {
        return d > rhs.d;
    }
};

struct Dijkstra
{
    int n;              //n:点数 m:临时变量
    vector<Edge> edges; //存储所有的边
    vector<int> G[MAXV];//每个点的所有相邻边序号
    bool done[MAXV];    // 是否已永久标号
    LL d[MAXV];         // s起点到各个点的距离
    LL num[MAXV];

    void init(int n)
    {
        this->n = n;
        for(int i = 0; i < n; i++) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from, int to, int dist)
    {
        G[from].push_back(edges.size());
        edges.push_back((Edge) { from, to, dist });
    }

    void dijkstra(int s)
    {
        priority_queue<HeapNode> Q;
        for(int i = 0; i < n; i++) d[i] = INF;
        CLR(num, 0);
        d[s] = 0;
        memset(done, 0, sizeof(done));
        Q.push((HeapNode) { 0, s, 0 });
        while(!Q.empty())
        {
            HeapNode x = Q.top();
            Q.pop();
            int u = x.u;
            if(done[u]) continue;
            done[u] = true;
            for(int i = 0; i < G[u].size(); i++)
            {
                Edge& e = edges[G[u][i]];
                if (d[e.to] == d[u] + e.dist)
                    num[e.to] = max(num[e.to], num[x.u] + 1);
                if(d[e.to] > d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    num[e.to] = num[x.u] + 1;
                    Q.push((HeapNode) { d[e.to], e.to, num[e.to] });
                }
            }
        }
    }
} dij;

LL chk[4];

int main()
{
    int T;
    RI(T);
    FE(kase, 1, T)
    {
        REP(i, 4) chk[i] = INF;
        int n, m, u, v, d, op;
        char type;
        RII(n, m);
        dij.init(n << 2);
        REP(i, m)
        {
            scanf("%d%d%d %c", &u, &v, &d, &type);
            u--; v--;
            if (type == 'L') op = 0;
            else if (type == 'O') op = 1;
            else if (type == 'V') op = 2;
            else op = 3;
            chk[op] = min(chk[op], (LL)d);
            dij.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
            dij.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
        }
        printf("Case %d: ", kase);
        if (n == 1)
        {
            REP(i, 4)
                if (chk[i] == INF)
                {
                    puts("Binbin you disappoint Sangsang again, damn it!");
                    goto end;
                }
            printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
                   , chk[0] + chk[1] + chk[2] + chk[3], 1);
            end:;
        }
        else
        {
            dij.dijkstra(3 * n);
            if (dij.d[4 * n - 1] == INF)
                puts("Binbin you disappoint Sangsang again, damn it!");
            else
            {
                printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %I64d LOVE strings at last.\n"
                       , dij.d[4 * n - 1], dij.num[4 * n - 1] / 4);
            }
        }
    }
    return 0;
}




spfa方法:(一个点也是特判,加点方式与Dijkstra相同)
const LL INF = 1e18;
const int MAXV = 10000;

struct Edge
{
    int from, to, dist;
};

struct SPFA
{
    int n;
    LL d[MAXV];
    int num[MAXV];
    vector<Edge> edges;
    vector<int> G[MAXV];
    bool inq[MAXV];
    void init(int n)
    {
        this->n = n;
        edges.clear();
        REP(i, n)
            G[i].clear();
    }
    void AddEdge(int from, int to, int dist)
    {
        G[from].push_back(edges.size());
        edges.push_back((Edge) {from, to, dist});
    }
    void spfa(int s)
    {
        queue<int> q;
        CLR(inq, false);
        CLR(num, 0);
        REP(i, n) d[i] = INF;
        d[s] = 0;
        q.push(s); inq[s] = true;
        while (!q.empty())
        {
            int u = q.front();
            q.pop(); inq[u] = false;
            REP(i, G[u].size())
            {
                Edge& e = edges[G[u][i]];
                if (d[e.to] == d[u] + e.dist && num[u] + 1 > num[e.to])
                {
                    num[e.to] = num[u] + 1;
                    if (!inq[e.to])
                    {
                        q.push(e.to);
                        inq[e.to] = true;
                    }
                }
                if(d[e.to] > d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    num[e.to] = num[u] + 1;
                    if (!inq[e.to])
                    {
                        q.push(e.to);
                        inq[e.to] = true;
                    }
                }
            }
        }
    }
} spfa;

LL chk[4];

int main()
{
    int T;
    RI(T);
    FE(kase, 1, T)
    {
        REP(i, 4) chk[i] = INF;
        int n, m, u, v, d, op;
        char type;
        RII(n, m);
        spfa.init(n << 2);
        REP(i, m)
        {
            scanf("%d%d%d %c", &u, &v, &d, &type);
            u--; v--;
            if (type == 'L') op = 0;
            else if (type == 'O') op = 1;
            else if (type == 'V') op = 2;
            else op = 3;
            chk[op] = min(chk[op], (LL)d);
            spfa.AddEdge(u + (op + 3) % 4 * n, v + op * n, d);
            spfa.AddEdge(v + (op + 3) % 4 * n, u + op * n, d);
        }
        printf("Case %d: ", kase);
        if (n == 1)
        {
            REP(i, 4)
                if (chk[i] == INF)
                {
                    puts("Binbin you disappoint Sangsang again, damn it!");
                    goto end;
                }
            printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
                   , chk[0] + chk[1] + chk[2] + chk[3], 1);
            end:;
        }
        else
        {
            spfa.spfa(3 * n);
            if (spfa.d[4 * n - 1] == INF)
                puts("Binbin you disappoint Sangsang again, damn it!");
            else
            {
                printf("Cute Sangsang, Binbin will come with a donkey after travelling %I64d meters and finding %d LOVE strings at last.\n"
                       , spfa.d[4 * n - 1], spfa.num[4 * n - 1] / 4);
            }
        }
    }
    return 0;
}




顺便弄一些自己的测试数据,方便查错。

4 4
1 2 1 L
2 1 1 O
1 3 1 V
3 4 1 E
ans:4, 1


4 4
1 2 1 L
2 3 1 O
3 4 1 V
4 1 1 E
ans:no


12  12
1 5 10 L
5 6 10 O
6 7 10 V
7 12 10 E
1 2 1 L
2 3 1 O
3 4 1 V
4 8 1 E
8 9 1 L
9 10 1 O
10 11 1 V
11 12 33 E
ans:40, 2


12  12
1 5 10 L
5 6 10 O
6 7 10 V
7 12 10 E
1 2 1 L
2 3 1 O
3 4 1 V
4 8 1 E
8 9 1 L
9 10 1 O
10 11 1 V
11 12 34 E
ans:40, 1


1 4
1 1 1 L
1 1 1 O
1 1 1 V
1 1 1 E
ans:4, 1


2 8
1 1 2 L
1 1 1 O
1 1 1 V
1 1 1 E
1 2 3 L
2 1 1 O
1 2 1 V
2 1 1 E
ans:5, 1


1 3
1 1 1 L
1 1 1 O
1 1 1 E
ans:no


11 11
1 2 1 L
2 3 1 O
3 4 348 V
4 11 1000 E
1 5 50 L
5 6 50 O
6 7 50 V
7 8 50 E
8 9 50 L
9 10 50 O
10 4 50 V
ans:1350 2