首页 > 代码库 > [转]printk usage
[转]printk usage
原文地址:http://elinux.org/Debugging_by_printing#Usage
If variable is of Type, use printk format specifier: --------------------------------------------------------- int %d or %x unsigned int %u or %x long %ld or %lx unsigned long %lu or %lx long long %lld or %llx unsigned long long %llu or %llx size_t %zu or %zx ssize_t %zd or %zx Raw pointer value SHOULD be printed with %p. The kernel supports the following extended format specifiers for pointer types: Symbols/Function Pointers: %pF versatile_init+0x0/0x110 %pf versatile_init %pS versatile_init+0x0/0x110 %pSR versatile_init+0x9/0x110 (with __builtin_extract_return_addr() translation) %ps versatile_init %pB prev_fn_of_versatile_init+0x88/0x88 For printing symbols and function pointers. The ‘S‘ and ‘s‘ specifiers result in the symbol name with (‘S‘) or without (‘s‘) offsets. Where this is used on a kernel without KALLSYMS - the symbol address is printed instead. The ‘B‘ specifier results in the symbol name with offsets and should be used when printing stack backtraces. The specifier takes into consideration the effect of compiler optimisations which may occur when tail-call‘s are used and marked with the noreturn GCC attribute. On ia64, ppc64 and parisc64 architectures function pointers are actually function descriptors which must first be resolved. The ‘F‘ and ‘f‘ specifiers perform this resolution and then provide the same functionality as the ‘S‘ and ‘s‘ specifiers. Kernel Pointers: %pK 0x01234567 or 0x0123456789abcdef For printing kernel pointers which should be hidden from unprivileged users. The behaviour of %pK depends on the kptr_restrict sysctl - see Documentation/sysctl/kernel.txt for more details. Struct Resources: %pr [mem 0x60000000-0x6fffffff flags 0x2200] or [mem 0x0000000060000000-0x000000006fffffff flags 0x2200] %pR [mem 0x60000000-0x6fffffff pref] or [mem 0x0000000060000000-0x000000006fffffff pref] For printing struct resources. The ‘R‘ and ‘r‘ specifiers result in a printed resource with (‘R‘) or without (‘r‘) a decoded flags member. Physical addresses: %pa 0x01234567 or 0x0123456789abcdef For printing a phys_addr_t type (and its derivatives, such as resource_size_t) which can vary based on build options, regardless of the width of the CPU data path. Passed by reference. Raw buffer as a hex string: %*ph 00 01 02 ... 3f %*phC 00:01:02: ... :3f %*phD 00-01-02- ... -3f %*phN 000102 ... 3f For printing a small buffers (up to 64 bytes long) as a hex string with certain separator. For the larger buffers consider to use print_hex_dump(). MAC/FDDI addresses: %pM 00:01:02:03:04:05 %pMR 05:04:03:02:01:00 %pMF 00-01-02-03-04-05 %pm 000102030405 %pmR 050403020100 For printing 6-byte MAC/FDDI addresses in hex notation. The ‘M‘ and ‘m‘ specifiers result in a printed address with (‘M‘) or without (‘m‘) byte separators. The default byte separator is the colon (‘:‘). Where FDDI addresses are concerned the ‘F‘ specifier can be used after the ‘M‘ specifier to use dash (‘-‘) separators instead of the default separator. For Bluetooth addresses the ‘R‘ specifier shall be used after the ‘M‘ specifier to use reversed byte order suitable for visual interpretation of Bluetooth addresses which are in the little endian order. IPv4 addresses: %pI4 1.2.3.4 %pi4 001.002.003.004 %p[Ii][hnbl] For printing IPv4 dot-separated decimal addresses. The ‘I4‘ and ‘i4‘ specifiers result in a printed address with (‘i4‘) or without (‘I4‘) leading zeros. The additional ‘h‘, ‘n‘, ‘b‘, and ‘l‘ specifiers are used to specify host, network, big or little endian order addresses respectively. Where no specifier is provided the default network/big endian order is used. IPv6 addresses: %pI6 0001:0002:0003:0004:0005:0006:0007:0008 %pi6 00010002000300040005000600070008 %pI6c 1:2:3:4:5:6:7:8 For printing IPv6 network-order 16-bit hex addresses. The ‘I6‘ and ‘i6‘ specifiers result in a printed address with (‘I6‘) or without (‘i6‘) colon-separators. Leading zeros are always used. The additional ‘c‘ specifier can be used with the ‘I‘ specifier to print a compressed IPv6 address as described by http://tools.ietf.org/html/rfc5952 UUID/GUID addresses: %pUb 00010203-0405-0607-0809-0a0b0c0d0e0f %pUB 00010203-0405-0607-0809-0A0B0C0D0E0F %pUl 03020100-0504-0706-0809-0a0b0c0e0e0f %pUL 03020100-0504-0706-0809-0A0B0C0E0E0F For printing 16-byte UUID/GUIDs addresses. The additional ‘l‘, ‘L‘, ‘b‘ and ‘B‘ specifiers are used to specify a little endian order in lower (‘l‘) or upper case (‘L‘) hex characters - and big endian order in lower (‘b‘) or upper case (‘B‘) hex characters. Where no additional specifiers are used the default little endian order with lower case hex characters will be printed. struct va_format: %pV For printing struct va_format structures. These contain a format string and va_list as follows: struct va_format { const char *fmt; va_list *va; }; Do not use this feature without some mechanism to verify the correctness of the format string and va_list arguments. u64 SHOULD be printed with %llu/%llx, (unsigned long long): printk("%llu", (unsigned long long)u64_var); s64 SHOULD be printed with %lld/%llx, (long long): printk("%lld", (long long)s64_var); If <type> is dependent on a config option for its size (e.g., sector_t, blkcnt_t) or is architecture-dependent for its size (e.g., tcflag_t), use a format specifier of its largest possible type and explicitly cast to it. Example: printk("test: sector number/total blocks: %llu/%llu\n", (unsigned long long)sector, (unsigned long long)blockcount); Reminder: sizeof() result is of type size_t. Thank you for your cooperation and attention.
Reference:
http://elinux.org/Kernel_Debugging_Tips#Using_a_kernel_debugger
http://blog.csdn.net/yihui8/article/details/6736679
By Randy Dunlap <rdunlap@infradead.org> and Andrew Murray <amurray@mpc-data.co.uk>
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。