首页 > 代码库 > 排序小结
排序小结
插入排序(O(N2)
void InsertionSort( ElementType A[ ], int N ){ int j, P; ElementType Tmp; for( P = 1; P < N; P++ ) { Tmp = A[ P ]; for( j = P; j > 0 && A[ j - 1 ] > Tmp; j-- ) A[ j ] = A[ j - 1 ]; A[ j ] = Tmp; }}
堆排序(2NlogN-O(NloglogN))
#define LeftChild( i ) ( 2 * ( i ) + 1 )void PercDown( ElementType A[ ], int i, int N ){ int Child; ElementType Tmp; for( Tmp = A[ i ]; LeftChild( i ) < N; i = Child ) { Child = LeftChild( i ); if( Child != N - 1 && A[ Child + 1 ] > A[ Child ] ) // A[ Child + 1 ] < A[ Child ] Child++; if( Tmp < A[ Child ] ) //Tmp > A[ Child ] A[ i ] = A[ Child ]; //两边的比较同时更改的话,就变成从大到小排序 else break; } A[ i ] =Tmp;}void Heapsort( ElementType A[ ], int N ){ int i; for( i = N / 2; i >= 0; i-- ) /* BuildHeap */ PercDown( A, i, N ); for( i = N - 1; i > 0; i-- ) { Swap( &A[ 0 ], &A[ i ] ); /* DeleteMax */ PercDown( A, 0, i ); }}
归并排序O(NlogN)
void Merge( ElementType A[ ], ElementType TmpArray[ ],int Lpos, int Rpos, int RightEnd ){ int i, LeftEnd, NumElements, TmpPos; LeftEnd = Rpos - 1; TmpPos = Lpos; NumElements = RightEnd - Lpos + 1; /* main loop */ while( Lpos <= LeftEnd && Rpos <= RightEnd ) if( A[ Lpos ] <= A[ Rpos ] ) TmpArray[ TmpPos++ ] = A[ Lpos++ ]; else TmpArray[ TmpPos++ ] = A[ Rpos++ ]; while( Lpos <= LeftEnd ) /* Copy rest of first half */ TmpArray[ TmpPos++ ] = A[ Lpos++ ]; while( Rpos <= RightEnd ) /* Copy rest of second half */ TmpArray[ TmpPos++ ] = A[ Rpos++ ]; /* Copy TmpArray back */ for( i = 0; i < NumElements; i++, RightEnd-- ) A[ RightEnd ] = TmpArray[ RightEnd ];}void MSort( ElementType A[ ], ElementType TmpArray[ ],int Left, int Right ){ int Center; if( Left < Right ) { Center = ( Left + Right ) / 2; MSort( A, TmpArray, Left, Center ); MSort( A, TmpArray, Center + 1, Right ); Merge( A, TmpArray, Left, Center + 1, Right ); }}void Mergesort( ElementType A[ ], int N ){ ElementType *TmpArray; TmpArray = malloc( N * sizeof( ElementType ) ); if( TmpArray != NULL ) { MSort( A, TmpArray, 0, N - 1 ); free( TmpArray ); } else FatalError( "No space for tmp array!!!" );}
快速排序O(NlogN)
/* Return median of Left, Center, and Right *//* Order these and hide the pivot */ElementType Median3( ElementType A[ ], int Left, int Right ){ int Center = ( Left + Right ) / 2; if( A[ Left ] > A[ Center ] ) Swap( &A[ Left ], &A[ Center ] ); if( A[ Left ] > A[ Right ] ) Swap( &A[ Left ], &A[ Right ] ); if( A[ Center ] > A[ Right ] ) Swap( &A[ Center ], &A[ Right ] ); /* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */ Swap( &A[ Center ], &A[ Right - 1 ] ); /* Hide pivot */ return A[ Right - 1 ]; /* Return pivot */}#define Cutoff ( 3 )void Qsort( ElementType A[ ], int Left, int Right ){ int i, j; ElementType Pivot; if( Left + Cutoff <= Right ) { Pivot = Median3( A, Left, Right ); i = Left; j = Right - 1; for( ; ; ) { while( A[ ++i ] < Pivot ) { } while( A[ --j ] > Pivot ) { } if( i < j ) Swap( &A[ i ], &A[ j ] ); else break; } Swap( &A[ i ], &A[ Right - 1 ] ); /* Restore pivot */ Qsort( A, Left, i - 1 ); Qsort( A, i + 1, Right ); } else /* Do an insertion sort on the subarray */ InsertionSort( A + Left, Right - Left + 1 );}/* This code doesn‘t work; it‘s Figure 7.15. *///A[i] = A[j] = Pivot时,程序死循环#if 0/* START: fig7_15.txt */i = Left + 1;j = Right - 2;for( ; ; ){ while( A[ i ] < Pivot ) i++; while( A[ j ] > Pivot ) j--; if( i < j ) Swap( &A[ i ], &A[ j ] ); else break;}#endifvoid Quicksort( ElementType A[ ], int N ){ Qsort( A, 0, N - 1 );}
排序小结
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。