首页 > 代码库 > Python多进程(multiprocessing)学习总结
Python多进程(multiprocessing)学习总结
简介
multiprocessing模块使用和threading包类似的API接口来产生多进程,multiprocessing包提供本地和远程的并发,通过使用subprocesses(子进程)代替threads(线程)有效的避开了GIL(Global Interpreter Lock)。由于这一点,multiprocessing模块允许程序充分的利用多处理器。可以跨平台使用,包括Unix和Windows!----https://docs.python.org/2/library/multiprocessing.html
提醒: Some of this package’s functionality requires a functioning shared semaphore implementation on the host operating system. Without one, the multiprocessing.synchronize module will be disabled, and attempts to import it will result in an ImportError. See issue 3770 for additional information.
简单介绍完毕!开始学习Function。
FUNCTIONS
ArrayReturns a synchronized shared array返回一个同步共享队列
Returns a bounded semaphore object返回一个有界信号对象
Condition(lock=None)
Returns a condition object返回一个状态对象
Returns an event object返回一个时间对象
JoinableQueue(maxsize=0)
Returns a queue object返回一个队列对象
Lock()
Returns a non-recursive lock object返回一个非递归锁对象
Manager()
Returns a manager associated with a running server process返回一个与正在运行的服务器进程相关联的进程 The managers methods such as `Lock()`, `Condition()` and `Queue()` can be used to create shared objects.管理方法如lock() ,condition() 和queue() 可用于创建共享对象。
Pipe(duplex=True)
Returns two connection object connected by a pipe返回通过管道连接的两个连接对象
Pool(processes=None, initializer=None, initargs=(), maxtasksperchild=None)
Returns a process pool object返回一个进程池对象
Queue(maxsize=0)
Returns a queue object返回一个队列对象
Returns a recursive lock object返回一个递归锁对象
Returns a shared array返回一个共享队列
RawValue(typecode_or_type, *args)
Returns a shared object返回一个共享对象
Semaphore(value=http://www.mamicode.com/1)
Returns a semaphore object返回一个信号量对象
Value(typecode_or_type, *args, **kwds)
Returns a synchronized shared object返回一个同步共享对象
active_children()
Return list of process objects corresponding to live child processes返回进程对象相对应活跃的的子进程列表
allow_connection_pickling()
Install support for sending connections and sockets between processes支持进程间通信
cpu_count()
Returns the number of CPUs in the system返回CPU的核心数(实际是线程数,我的就是四核心八线程返回为8)
current_process()
Return process object representing the current process返回当前进程的进程对象
freeze_support()
Check whether this is a fake forked process in a frozen executable. If so then run code specified by commandline and exit.
get_logger()
Return package logger -- if it does not already exist then it is created
log_to_stderr(level=None)
Turn on logging and add a handler which prints to stderr
set_executable(executable)
Sets the path to a python.exe or pythonw.exe binary used to run child processes on Windows instead of sys.executable. Useful for people embedding Python.
例子
# -*- coding: utf-8 -*- from multiprocessing import Process def f(name, Blog): print "hello", name print "Blog:", Blog if __name__ == '__main__': p = Process(target=f, args=("The_Third_Wave", "http://blog.csdn.net/zhanh1218")) p.start() p.join()结果如下:
hello The_Third_Wave Blog: http://blog.csdn.net/zhanh1218注意事项:请不要再IDLE中运行这段代码,否则你什么也看不到。请在自己的IDE中运行,我用的是eclipse。具体原因我还没搞明白。待补充
# -*- coding: utf-8 -*- from multiprocessing import Process import os, time, datetime, random from multiprocessing import Pool def task_1(name): print 'Run task_1 %s (%s)...' % (name, os.getpid()) time.sleep(random.randint(0, 3)) print 'id = %s over at %s' % (name, datetime.datetime.now()) def task_2(x): time.sleep(1) print "x = %s is run at %s" %(x, datetime.datetime.now()) return x*x if __name__ == '__main__': print 'Parent process pid is %s. Start at %s' % (os.getpid(), datetime.datetime.now()) p = Pool() for i in range(5): p.apply_async(task_1, args=(i,)) result = p.apply_async(task_2, [100]) print result.get(timeout=10) print p.map(task_2, range(10)) print "HERE Time is %s" %datetime.datetime.now() p.map(task_1, range(6, 10)) p.close() p.join() print 'All subprocesses done at %s' %datetime.datetime.now()结果为:
Parent process pid is 4852. Start at 2014-06-12 16:27:13.824000 10000 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] HERE Time is 2014-06-12 16:27:17.105000 Run task_1 4 (9104)... id = 4 over at 2014-06-12 16:27:16.047000 x = 6 is run at 2014-06-12 16:27:17.047000 x = 1 is run at 2014-06-12 16:27:16.105000 x = 8 is run at 2014-06-12 16:27:17.105000 Run task_1 0 (8604)... id = 0 over at 2014-06-12 16:27:14.044000 Run task_1 2 (8604)... id = 2 over at 2014-06-12 16:27:15.046000 x = 4 is run at 2014-06-12 16:27:16.105000 x = 7 is run at 2014-06-12 16:27:17.105000 x = 0 is run at 2014-06-12 16:27:16.105000 x = 9 is run at 2014-06-12 16:27:17.105000 x = 100 is run at 2014-06-12 16:27:15.097000 x = 5 is run at 2014-06-12 16:27:16.105000 Run task_1 7 (4152)... id = 7 over at 2014-06-12 16:27:18.105000 x = 2 is run at 2014-06-12 16:27:16.105000 Run task_1 6 (7524)... id = 6 over at 2014-06-12 16:27:18.105000 x = 3 is run at 2014-06-12 16:27:16.105000 Run task_1 8 (7500)... id = 8 over at 2014-06-12 16:27:18.105000 Run task_1 1 (7392)... id = 1 over at 2014-06-12 16:27:14.045000 Run task_1 3 (7392)... id = 3 over at 2014-06-12 16:27:17.046000 Run task_1 9 (7392)... id = 9 over at 2014-06-12 16:27:20.105000 All subprocesses done at 2014-06-12 16:27:20.149000join([timeout])阻碍线程调用直到进程的join()方法被调用!调用join前必须前调用close方法。close方法阻止向进程池中提交任务,也就是不能继续添加新进程!
进程间通信
Queues
from multiprocessing import Process, Queue def f(q): q.put("Hello The_Third_Wave") if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() print q.get() p.join()
<pre name="code" class="python">结果为:Hello The_Third_WaveQueues are thread and process safe.
Pipes
from multiprocessing import Process, Pipe def f(conn): conn.send("Hello The_Third_Wave") conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print parent_conn.recv() p.join()
# -*- coding: utf-8 -*- from multiprocessing import Process, Lock import os, time, datetime, random def task_1(lock, name): lock.acquire() print 'Run task_1 %s (%s)...' % (name, os.getpid()) time.sleep(random.randint(1, 3)) print 'id = %s over at %s' % (name, datetime.datetime.now()) lock.release() if __name__ == '__main__': print 'Parent process pid is %s. Start at %s' % (os.getpid(), datetime.datetime.now()) lock = Lock() for i in range(5): Process(target=task_1, args=(lock, i)).start() print 'Parent process done at %s' %datetime.datetime.now()结果为:
Parent process pid is 7908. Start at 2014-06-12 17:09:12.726000 Parent process done at 2014-06-12 17:09:12.861000 Run task_1 1 (7104)... id = 1 over at 2014-06-12 17:09:14.892000 Run task_1 0 (2440)... id = 0 over at 2014-06-12 17:09:15.892000 Run task_1 2 (8812)... id = 2 over at 2014-06-12 17:09:16.892000 Run task_1 3 (2552)... id = 3 over at 2014-06-12 17:09:19.892000 Run task_1 4 (2172)... id = 4 over at 2014-06-12 17:09:22.893000可以看到主进程执行完毕,因为锁的存在,子进程还在逐步执行!
进程之间共享状态
As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes.
However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.
未完待续。。。
本文由@The_Third_Wave(Blog地址:http://blog.csdn.net/zhanh1218)原创。不定期更新,有错误请指正。
Sina微博关注:@The_Third_Wave
如果这篇博文对您有帮助,为了好的网络环境,不建议转载,建议收藏!如果您一定要转载,请带上后缀和本文地址。