首页 > 代码库 > 【LeetCode】152. Maximum Product Subarray
【LeetCode】152. Maximum Product Subarray
题目:
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
题解:
先暴力解,遍历所有组合,更新最大值。很显然得超时。
Solution 1 (TLE)
class Solution { public: int maxProduct(vector<int>& nums) { int n = nums.size(), mproduct = nums[0]; for (int i = 0; i < n; ++i) { int tmp = nums[i]; mproduct = max(mproduct, tmp); for (int j = i + 1; j < n; ++j) { tmp = tmp * nums[j]; mproduct = max(mproduct, tmp); } } return mproduct; } };
Besides keeping track of the largest product, we also need to keep track of the smallest product. Why? The smallest product, which is the largest in the negative sense could become the maximum when being multiplied by a negative number. (from here)
Let us denote that:
f(k) = Largest product subarray, from index 0 up to k.
Similarly,
g(k) = Smallest product subarray, from index 0 up to k.
Then,
f(k) = max( f(k-1) * A[k], A[k], g(k-1) * A[k] ) g(k) = min( g(k-1) * A[k], A[k], f(k-1) * A[k] )
Solution 2 ()
class Solution { public: int maxProduct(vector<int>& nums) { int maxPro = nums[0], minPro = nums[0], result = nums[0], n = nums.size(); for (int i=1; i<n; i++) { int mx = maxPro, mn = minPro; maxPro = max(max(nums[i], mx * nums[i]), mn * nums[i]); minPro = min(min(nums[i], mx * nums[i]), mn * nums[i]); result = max(maxPro, result); } return result; } };
【LeetCode】152. Maximum Product Subarray
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。