首页 > 代码库 > MATLAB新手教程

MATLAB新手教程

MATLAB新手教程

 

1MATLAB的基本知识

1-1、基本运算与函数   

在MATLAB下进行基本数学运算,仅仅需将运算式直接打入提示号(>>)之後,并按入Enter键就可以。比如:  

>> (5*2+1.3-0.8)*10/25  

ans =4.2000  

MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。

小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。  

我们也可将上述运算式的结果设定给还有一个变数x:  

x = (5*2+1.3-0.8)*10^2/25  

x = 42 

此时MATLAB会直接显示x的值。由上例可知,MATLAB认识全部一般经常使用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。  

小提示: MATLAB将全部变数均存成double的形式,所以不需经过变数宣告(Variabledeclaration)。MATLAB同一时候也会自己主动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。   

若不想让MATLAB每次都显示运算结果,仅仅需在运算式最後加上分号(;)就可以,例如以下例:

y = sin(10)*exp(-0.3*4^2);  

若要显示变数y的值,直接键入y就可以:  

>>y  

y =-0.0045  

在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB经常使用到的数学函数。

下表即为MATLAB经常使用的基本数学函数及三角函数:  

小整理:MATLAB经常使用的基本数学函数

abs(x):纯量的绝对值或向量的长度

angle(z):复 数z的相角(Phase angle)

sqrt(x):开平方

real(z):复数z的实部

imag(z):复数z的虚 部

conj(z):复数z的共轭复数

round(x):四舍五入至近期整数

fix(x):不管正负,舍去小数至近期整数

floor(x):地板函数,即舍去正小数至近期整数

ceil(x):天花板函数,即增加正小数至近期整数

rat(x):将实数x化为分数表示

rats(x):将实数x化为多项分数展开

sign(x):符号函数 (Signum function)。  

当x<0时,sign(x)=-1;  

当x=0时,sign(x)=0;  

当x>0时,sign(x)=1。  

> 小整理:MATLAB经常使用的三角函数

sin(x):正弦函数

cos(x):馀弦函数

tan(x):正切函数

asin(x):反正弦函数

acos(x):反馀弦函数

atan(x):反正切函数

atan2(x,y):四象限的反正切函数

sinh(x):超越正弦函数

cosh(x):超越馀弦函数

tanh(x):超越正切函数

asinh(x):反超越正弦函数

acosh(x):反超越馀弦函数

atanh(x):反超越正切函数  

变数也可用来存放向量或矩阵,并进行各种运算,例如以下例的列向量(Row vector)运算:

x = [1 3 5 2];  

y = 2*x+1  

y = 3 7 11 5  

小提示:变数命名的规则  

1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多仅仅能有19个字母,MATLAB会忽略多馀字母   

我们能够任意更改、添加或删除向量的元素: 

y(3) = 2 % 更改第三个元素  

y =3 7 2 5  

y(6) = 10 % 增加第六个元素  

y = 3 7 2 5 0 10  

y(4) = [] % 删除第四个元素,  

y = 3 7 2 0 10  

在上例中,MATLAB会忽略全部在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算: 

x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算  

ans = 9  

y(2:4)-1 % 取出y的第二至第四个元素来做运算  

ans = 6 1 -1  

在上例中,2:4代表一个由2、3、4组成的向量

 

若对MATLAB函数使用方法有疑问,可随时使用help来寻求线上支援(on-line help):helplinspace  

小整理:MATLAB的查询命令

help:用来查询已知命令的使用方法。比如已知inv是用来计算反矩阵,键入help inv就可以得知有关inv命令的使用方法。(键入help help则显示help的使用方法,请试看看!) lookfor:用来寻找未知的命令。比如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出全部和keywordinverse相关的指令。找到所需的命令後 ,就可以用help进一步找出其使用方法。(lookfor其实是对全部在搜寻路径下的M档案进行keyword对第一注解行的比对,详见後叙。)  

将列向量转置(Transpose)後,就可以得到行向量(Column vector):  

z = x‘  

z = 4.0000  

   5.2000  

   6.4000  

   7.6000  

   8.8000  

   10.0000   

不论是行向量或列向量,我们均可用同样的函数找出其元素个数、最大值、最小值等: 

length(z) % z的元素个数  

ans = 6  

max(z) % z的最大值  

ans = 10  

min(z) % z的最小值  

ans =   4  

小整理:适用於向量的经常使用函数有:

min(x): 向量x的元素的最小值

max(x): 向量x的元素的最大值

mean(x): 向量x的元素的平均值

median(x): 向量x的元素的中位数

std(x): 向量x的元素的标准差

diff(x): 向量x的相邻元素的差

sort(x): 对向量x的元素进行排序(Sorting)

length(x): 向量x的元素个数

norm(x): 向量x的欧氏(Euclidean)长度

sum(x): 向量x的元素总和

prod(x): 向量x的元素总乘积

cumsum(x): 向量x的累计元素总和

cumprod(x): 向量x的累计元素总乘积

dot(x, y): 向量x和y的内 积

cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。) 

 

 

若要输入矩阵,则必须在每一列结尾加上分号(;),例如以下例:  

A = [1 2 3 4; 5 6 7 8; 9 1011 12];   

A =   

1  2  3 4   

5  6  7 8   

9  10 11  12  

相同地,我们能够对矩阵进行各种处理:  

A(2,3) = 5 % 改变位於第二列,第三行的元素值  

A =   

1  2  3 4  

5  6  5 8   

9  10 11  12   

B = A(2,1:3) % 取出部份矩阵B  

B = 5 6 5  

A = [A B‘] % 将B转置後以行向量并入A  

A =   

1  2  3  4  5   

5  6  5  8  6   

9  10 11  12 5  

A(:, 2) = [] % 删除第二行(:代表全部列)  

A =   

1  3  4 5   

5  5  8 6   

9  11 12  5   

A = [A; 4 3 2 1] % 增加第四列   

A =   

1  3   4  5   

5  5   8  6   

9  11  12 5  

4  3   2  1  

A([1 4], :) = [] % 删除第一和第四列(:代表全部行)  

A =   

5  5   8  6   

9  11  12 5  

这几种矩阵处理的方式能够相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。  

小提示:在MATLAB的内部资料结构中,每个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将全部直行进行堆叠後的第六个元素)。  

此外,若要又一次安排矩阵的形状,可用reshape命令:  

B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数  

B =  

5   8   

9   12   

5   6   

11  5  

小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。曾经例而言,reshape(A, 8, 1)和A(:)相同都会产生一个8x1的矩阵。 

MATLAB可在同一时候运行数个命令,仅仅要以逗号或分号将命令隔开:  

x = sin(pi/3); y = x^2; z = y*10,

z =   

7.5000  

若一个数学运算是太长,可用三个句点将其延伸到下一行: 

z = 10*sin(pi/3)* ...  

sin(pi/3);  

若要检视现存於工作空间(Workspace)的变数,可键入who:  

who  

Your variables are:  

testfile x  

这些是由使用者定义的变数。若要知道这些变数的具体资料,可键入:  

whos  

Name Size Bytes Class 

A 2x4 64 double array  

B 4x2 64 double array  

ans 1x1 8 double array  

x 1x1 8 double array  

y 1x1 8 double array  

z 1x1 8 double array  

Grand total is 20 elements using 160 bytes  

使用clear能够删除工作空间的变数:  

clear A  

A  

??? Undefined function or variable ‘A‘.  

另外MATLAB有些永久常数(Permanent constants),尽管在工作空间中看不 到,但使用者可直接取用,比如:  

pi  

ans = 3.1416  

下表即为MATLAB经常使用到的永久常数。  

小整理:MATLAB的永久常数 i或j:基本虚数单位

eps:系统的浮点(Floating-point)准确度

inf:无限大, 比如1/0 nan或NaN:非数值(Not a number) ,比如0/0

pi:圆周率 p(= 3.1415926...)

realmax:系统所能表示的最大数值 

realmin:系统所能表示的最小数值

nargin: 函数的输入引数个数

nargin: 函数的输出引数个数  

 1-2、反复命令   

最简单的反复命令是for圈(for-loop),其基本形式为:    

for 变数 = 矩阵;   

运算式;   

end  

当中变数的值会被依次设定为矩阵的每一行,来运行介於for和end之间的运算式。因此,若无意外情况,运算式运行的次数会等於矩阵的行数。  

举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence): 

x = zeros(1,6); % x是一个16的零矩阵  

for i = 1:6,  

x(i) = 1/i;  

end    

在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:   

format rat % 使用分数来表示数值  

disp(x)  

1 1/2 1/3 1/4 1/5 1/6  

for圈能够是多层的,下例产生一个16的Hilbert矩阵h,当中为於第i列、第j行的元素为   

h = zeros(6);  

for i = 1:6,  

for j = 1:6,  

h(i,j) = 1/(i+j-1);   

end   

end   

disp(h)   

1 1/2 1/3 1/4 1/5 1/6  

1/2 1/3 1/4 1/5 1/6 1/7  

1/3 1/4 1/5 1/6 1/7 1/8  

1/4 1/5 1/6 1/7 1/8 1/9   

1/5 1/6 1/7 1/8 1/9 1/10   

1/6 1/7 1/8 1/9 1/10 1/11  

小提示:预先配置矩阵 在上面的样例,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。若不预先配置矩阵,程式仍可运行,但此时MATLAB须要动态地添加(或减小)矩阵的大小,因而减少程式的运行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。  

 

在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和:   

for i = h,  

disp(norm(i)^2); % 印出每一行的平方和  

end  

 

1299/871  

282/551   

650/2343  

524/2933  

559/4431  

831/8801  

在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。  

令一个经常使用到的反复命令是while圈,其基本形式为:  

while 条件式;  

运算式;  

end 

也就是说,仅仅要条件示成立,运算式就会一再被运行。比如先前产生调和数列的样例,我们可用while圈改写例如以下:   

x = zeros(1,6); % x是一个16的零矩阵  

i = 1;  

while i <= 6,   

x(i) = 1/i;   

i = i+1;   

end  

format short

  

1-3、逻辑命令  

最简单的逻辑命令是if, ..., end,其基本形式为: 

if 条件式;   

运算式;   

end   

if rand(1,1) > 0.5,   

disp(‘Given random number is greater than 0.5.‘);  

end   

Given random number is greater than 0.5.

  

1-4、集合多个命令於一个M档案    

若要一次运行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在 MATLAB提示号下键入此档案的主档名就可以。此种包括MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。比如一个名为test.m的M档案,包括一连串的MATLAB命令,那麽仅仅要直接键入test,就可以运行其所包括的命令:  

pwd % 显示如今的文件夹  

ans =   

D:\MATLAB5\bin  

cd c:\data\mlbook % 进入test.m所在的文件夹  

type test.m % 显示test.m的内容  

% This is my first test M-file.  

% Roger Jang, March 3, 1997  

fprintf(‘Start of test.m!\n‘);  

for i = 1:3,  

fprintf(‘i = %d ---> i^3 = %d\n‘, i, i^3);   

end  

fprintf(‘End of test.m!\n‘);  

test % 运行test.m   

Start of test.m!  

i = 1 ---> i^3 = 1  

i = 2 ---> i^3 = 8  

i = 3 ---> i^3 = 27  

End of test.m!  

小提示:第一注解行(H1 help line) test.m的前两行是注解,能够使程式易於了解与管理。特别要说明的是,第一注解行通经常使用来简短说明此M档案的功能,以便lookfor能以keyword比对的方式来找出此M档案。举例来说,test.m的第一注解行包括test这个字,因此假设键入lookfor test,MATLAB就可以列出全部在第一注解行包括test的M档案,因而test.m也会被列名在内。  

严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。前述的test.m即为命令集,其效用和将命令逐一输入全然一样,因此若在命令集能够直接使用工作空间的变数,并且在命令集中设定的变数,也都在工作空间中看得到。函数则须要用到输入引数(Input arguments)和输出引数(Output arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。举例来说,若要计算一个正整数的阶乘 (Factorial),我们能够写一个例如以下的MATLAB函数并将之存档於fact.m:  

function output = fact(n)  

% FACT Calculate factorial of a given positive integer.  

output = 1;   

for i = 1:n,   

output = output*i;   

end   

当中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的临时变数。要使用此函数,直接键入函数名及适当输入引数值就可以:  

y = fact(5)  

y = 120  

(当然,在运行fact之前,你必须先进入fact.m所在的文件夹。)在运行fact(5)时,

MATLAB会跳入一个下层的临时工作空间(Temperary workspace),将变数n的值设定为5,然後进行各项函数的内部运算,全部内部运算所产生的变数(包括输入引数n、临时变数i,以及输出引数output)都存在此临时工作空间中。运算完成後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此临时工作空间及其所含的全部变数。换句话说,在呼叫函数时,你仅仅能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但全部的临时变数都会随着函数的结束而消失,你并无法得到它们的值。 

小提示:有关阶乘函数 前面(及後面)用到的阶乘函数仅仅是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。  

MATLAB的函数也能够是递式的(Recursive),也就是说,一个函数能够呼叫它本身。

举例来说,n! = n*(n-1)!,因此前面的阶乘函数能够改成递式的写法:  

function output = fact(n)  

% FACT Calculate factorial of a given positive integerrecursively.  

if n == 1, % Terminating condition  

output = 1;  

return;  

end  

output = n*fact(n-1);   

在写一个递函数时,一定要包括结束条件(Terminating condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。  

 

1-5、搜寻路径  

在前一节中,test.m所在的文件夹是d:\mlbook。假设不先进入这个文件夹,MATLAB就找不到你要运行的M档案。假设希望MATLAB不论在何处都能运行test.m,那麽就必须将d:\mlbook增加MATLAB的搜寻路径(Search path)上。要检视MATLAB的搜寻路径,键入path就可以: 

path   

MATLABPATH  

d:\matlab5\toolbox\matlab\general  

d:\matlab5\toolbox\matlab\ops  

d:\matlab5\toolbox\matlab\lang  

d:\matlab5\toolbox\matlab\elmat   

d:\matlab5\toolbox\matlab\elfun   

d:\matlab5\toolbox\matlab\specfun   

d:\matlab5\toolbox\matlab\matfun   

d:\matlab5\toolbox\matlab\datafun  

d:\matlab5\toolbox\matlab\polyfun  

d:\matlab5\toolbox\matlab\funfun  

d:\matlab5\toolbox\matlab\sparfun  

d:\matlab5\toolbox\matlab\graph2d  

d:\matlab5\toolbox\matlab\graph3d  

d:\matlab5\toolbox\matlab\specgraph   

d:\matlab5\toolbox\matlab\graphics  

d:\matlab5\toolbox\matlab\uitools  

d:\matlab5\toolbox\matlab\strfun  

d:\matlab5\toolbox\matlab\iofun  

d:\matlab5\toolbox\matlab\timefun  

d:\matlab5\toolbox\matlab\datatypes  

d:\matlab5\toolbox\matlab\dde  

d:\matlab5\toolbox\matlab\demos  

d:\matlab5\toolbox\tour   

d:\matlab5\toolbox\simulink\simulink  

d:\matlab5\toolbox\simulink\blocks  

d:\matlab5\toolbox\simulink\simdemos   

d:\matlab5\toolbox\simulink\dee  

d:\matlab5\toolbox\local  

此搜寻路径会依已安装的工具箱(Toolboxes)不同而有所不同。要查询某一命令是在搜寻路径的何处,可用which命令:   

which expo  

d:\matlab5\toolbox\matlab\demos\expo.m  

非常显然c:\data\mlbook并不在MATLAB的搜寻路径中,因此MATLAB找不到test.m这个M档案:  

which test  

c:\data\mlbook\test.m  

要将d:\mlbook增加MATLAB的搜寻路径,还是使用path命令:  

path(path, ‘c:\data\mlbook‘);   

此时d:\mlbook已增加MATLAB搜寻路径(键入path试看看),因此MATLAB已经"看"得到

test.m:  

which test  

c:\data\mlbook\test.m  

如今我们就能够直接键入test,而不必先进入test.m所在的文件夹。  

小提示:怎样在其启动MATLAB时,自己主动设定所需的搜寻路径? 假设在每一次启动MATLAB後都要设定所需的搜寻路径,将是一件非常麻烦的事。有两种方法,能够使MATLAB启动後 ,就可以加载使用者定义的搜寻路径:  

1.MATLAB的预设搜寻路径是定义在matlabrc.m(在c:\matlab之下,或是其它安装MATLAB 的主文件夹下),MATLAB每次启动後,即自己主动运行此档案。因此你能够直接改动matlabrc.m ,以增加新的文件夹於搜寻路径之中。  

2.MATLAB在运行matlabrc.m时,同一时候也会在预设搜寻路径中寻找startup.m,若此档案存在,则运行其所含的命令。因此我们可将全部在MATLAB启动时必须运行的命令(包括更改搜寻路径的命令),放在此档案中。  

每次MATLAB遇到一个命令(比如test)时,其处置程序为:  

1.将test视为使用者定义的变数。

2.若test不是使用者定义的变数,将其视为永久常数 。

3.若test不是永久常数,检查其是否为眼下工作文件夹下的M档案。

4.若不是,则由搜寻路径寻找是否有test.m的档案。

5.若在搜寻路径中找不到,则MATLAB会发出哔哔声并印出错误讯息。  

下面介绍与MATLAB搜寻路径相关的各项命令。  

 

 

1-6、资料的储存与加载  

有些计算旷日废时,那麽我们通常希望能将计算所得的储存在档案中,以便将来可进行其它处理。MATLAB储存变数的基本命令是save,在不加不论什么选项(Options)时,save会将变数以二进制(Binary)的方式储存至副档名为mat的档案,例如以下述:  

save:将工作空间的全部变数储存到名为matlab.mat的二进制档案。

save filename:将工作空间的全部变数储存到名为filename.mat的二进制档案。 save filename x y z :将变数x、y、z储存到名为filename.mat的二进制档案。  

下面为使用save命令的一个简例:  

who % 列出工作空间的变数  

Your variables are: 

B h j y  

ans i x z  

save test B y % 将变数B与y储存至test.mat  

dir % 列出如今文件夹中的档案  

. 2plotxy.doc fact.m simulink.doc test.m ~$1basic.doc  

.. 3plotxyz.doc first.doc temp.doc test.mat  

1basic.doc book.dot go.m template.doc testfile.dat  

delete test.mat % 删除test.mat  

以二进制的方式储存变数,通常档案会比較小,并且在加载时速度较快,可是就无法用普通的文书软体(比如pe2或记事本)看到档案内容。若想看到档案内容,则必须加上-ascii选项,详见下述:  

save filename x -ascii:将变数x以八位数存到名为filename的ASCII档案。

Save filename x -ascii -double:将变数x以十六位数存到名为filename的ASCII档案。  

还有一个选项是-tab,可将同一列相邻的数目以定位键(Tab)隔开。  

小提示:二进制和ASCII档案的比較 在save命令使用-ascii选项後,会有下列现象:save命令就不会在档案名称後加上mat的副档名。

因此以副档名mat结尾的档案一般是MATLAB的二进位资料档。

若非有特殊须要,我们应该尽量以二进制方式储存资料。   

load命令可将档案加载以取得储存之变数:  

load filename:load会寻找名称为filename.mat的档案,并以二进制格式加载。若找不到filename.mat,则寻找名称为filename的档案,并以ASCII格式加载。load filename-ascii:load会寻找名称为filename的档案,并以ASCII格式加载。  

若以ASCII格式加载,则变数名称即为档案名称(但不包括副档名)。若以二进制加载,则可保留原有的变数名称,例如以下例:  

clear all; % 清除工作空间中的变数  

x = 1:10;  

save testfile.dat x -ascii % 将x以ASCII格式存至名为testfile.dat的档案  

load testfile.dat % 加载testfile.dat  

who % 列出工作空间中的变数  

Your variables are: 

testfile x  

注意在上述过程中,由於是以ASCII格式储存与加载,所以产生了一个与档案名称同样的变数testfile,此变数的值和原变数x全然同样。  

1-7、结束MATLAB  

有三种方法能够结束MATLAB:  

1.键入exit

2.键入quit

3.直接关闭MATLAB的命令视窗(Command window)  

 

 

2.数值分析

2.1微分 

diff函数用以演算一函数的微分项,相关的函数语法有下列4个:  

diff(f) 传回f对预设独立变数的一次微分值  

diff(f,‘t‘) 传回f对独立变数t的一次微分值  

diff(f,n) 传回f对预设独立变数的n次微分值  

diff(f,‘t‘,n) 传回f对独立变数t的n次微分值  

    数值微分函数也是用diff,因此这个函数是靠输入的引数决定是以数值或是符号微分,假设引数为向量则运行数值微分,假设引数为符号表示式则运行符号微分。  

    先定义下列三个方程式,接著再演算其微分项:  

>>S1 = ‘6*x^3-4*x^2+b*x-5‘;  

>>S2 = ‘sin(a)‘;  

>>S3 = ‘(1 - t^3)/(1 + t^4)‘;  

>>diff(S1)  

ans=18*x^2-8*x+b  

>>diff(S1,2)  

ans= 36*x-8  

>>diff(S1,‘b‘)  

ans= x  

>>diff(S2)  

ans=  

cos(a)  

>>diff(S3)  

ans=-3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3  

>>simplify(diff(S3))  

ans= t^2*(-3+t^4-4*t)/(1+t^4)^2 

2.2积分 

 int函数用以演算一函数的积分项, 这个函数要找出一符号式 F 使得diff(F)=f。假设积

分式的解析式(analytical form, closed form) 不存在的话或是MATLAB无法找到,则int 传回原输入的符号式。相关的函数语法有下列 4个:  

int(f) 传回f对预设独立变数的积分值  

int(f,‘t‘) 传回f对独立变数t的积分值  

int(f,a,b) 传回f对预设独立变数的积分值,积分区间为[a,b],a和b为数值式  

int(f,‘t‘,a,b) 传回f对独立变数t的积分值,积分区间为[a,b],a和b为数值式  

int(f,‘m‘,‘n‘) 传回f对预设变数的积分值,积分区间为[m,n],m和n为符号式  

我们示范几个样例:  

>>S1 = ‘6*x^3-4*x^2+b*x-5‘;  

>>S2 = ‘sin(a)‘;  

>>S3 = ‘sqrt(x)‘; 

>>int(S1)  

ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x  

>>int(S2)  

ans= -cos(a)  

>>int(S3)  

ans= 2/3*x^(3/2)  

>>int(S3,‘a‘,‘b‘)  

ans= 2/3*b^(3/2)- 2/3*a^(3/2)  

>>int(S3,0.5,0.6)   

ans= 2/25*15^(1/2)-1/6*2^(1/2)  

>>numeric(int(S3,0.5,0.6)) % 使用numeric函数能够计算积分的数值  

ans= 0.0741 

2.3求解常微分方程式  

  MATLAB解常微分方程式的语法是dsolve(‘equation‘,‘condition‘),当中equation代表常微分方程式即y‘=g(x,y),且须以Dy代表一阶微分项y‘ D2y代表二阶微分项y‘‘ ,   

condition则为初始条件。     

如果有下面三个一阶常微分方程式和其初始条件     

y‘=3x2, y(2)=0.5    

y‘=2.x.cos(y)2, y(0)=0.25      

y‘=3y+exp(2x), y(0)=3    

相应上述常微分方程式的符号运算式为:      

>>soln_1 = dsolve(‘Dy =3*x^2‘,‘y(2)=0.5‘)      

ans= x^3-7.500000000000000     

>>ezplot(soln_1,[2,4]) % 看看这个函数的长相     

>>soln_2 = dsolve(‘Dy =2*x*cos(y)^2‘,‘y(0) = pi/4‘)      

ans= atan(x^2+1)    

>>soln_3 = dsolve(‘Dy = 3*y +exp(2*x)‘,‘ y(0) = 3‘)      

ans= -exp(2*x)+4*exp(3*x)   

2.4非线性方程式的实根  

    要求任一方程式的根有三步骤:   

    先定义方程式。要注意必须将方程式安排成 f(x)=0 的形态,比如一方程式为sin(x)=3,

则该方程式应表示为f(x)=sin(x)-3。能够 m-file 定义方程式。  

    代入适当范围的 x, y(x) 值,将该函数的分布图画出,藉以了解该方程式的「长相」。 

    由图中决定y(x)在何处附近(x0)与 x 轴相交,以fzero的语法fzero(‘function‘,x0)就可以求出在 x0附近的根,当中 function 是先前已定义的函数名称。假设从函数分布图看出根不仅仅一个,则须再代入还有一个在根附近的 x0,再求出下一个根。  

    下面分别介绍几数个方程式,来说明怎样求解它们的根。 

    例一、方程式为  

   sin(x)=0  

    我们知道上式的根有 ,求根方式例如以下:  

>> r=fzero(‘sin‘,3) % 由于sin(x)是内建函数,其名称为sin,因此无须定义它,选择 x=3 附近求根  

 r=3.1416  

>> r=fzero(‘sin‘,6) % 选择 x=6 附近求根  

r = 6.2832 

    例二、方程式为MATLAB 内建函数 humps,我们不需要知道这个方程式的形态为何,只是我们能够将它划出来,再找出根的位置。求根方式例如以下:  

>> x=linspace(-2,3);  

>> y=humps(x);  

>> plot(x,y), grid % 由图中可看出在0和1附近有二个根

 

>> r=fzero(‘humps‘,1.2)  

r = 1.2995 

例三、方程式为y=x.^3-2*x-5  

    这个方程式事实上是个多项式,我们说明除了用 roots 函数找出它的根外,也能够用这节介绍的方法求根,注意二者的解法及结果有所不同。求根方式例如以下:  

% m-function, f_1.m  

function y=f_1(x) % 定义 f_1.m 函数  

y=x.^3-2*x-5; 

>> x=linspace(-2,3);  

>> y=f_1(x);  

>> plot(x,y), grid % 由图中可看出在2和-1附近有二个根 

 

>> r=fzero(‘f_1‘,2); % 决定在2附近的根  

r = 2.0946  

>> p=[1 0 -2 -5]  

>> r=roots(p) % 以求解多项式根方式验证  

r =  

2.0946  

-1.0473 + 1.1359i   

-1.0473 - 1.1359i  

2.5线性代数方程(组)求解

    我们习惯将上组方程式以矩阵方式表演示样例如以下  

    AX=B  

当中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项 

要解上述的联立方程式,我们能够利用矩阵左除 \ 做运算,即是 X=A\B。  

    假设将原方程式改写成 XA=B 

当中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项 

    注意上式的 X, B 已改写成列向量,A事实上是前一个方程式中 A 的转置矩阵。上式的 X 能够矩阵右除 / 求解,即是 X=B/A。  

    若以反矩阵运算求解 AX=B, X=B,即是 X=inv(A)*B,或是改写成 XA=B, X=B,即是X=B*inv(A)。  

    我们直接以以下的样例来说明这三个运算的使用方法:  

>> A=[3 2-1; -1 3 2; 1 -1 -1]; % 将等式的左边系数键入  

>> B=[10 5 -1]‘; % 将等式右边之已知项键入,B要做转置  

>> X=A\B % 先以左除运算求解  

X = % 注意X为行向量  

-2  

5  

6  

>> C=A*X % 验算解是否正确  

C = % C=B  

 

10  

5  

-1 

>> A=A‘; % 将A先做转置  

>> B=[10 5 -1];  

>> X=B/A % 以右除运算求解的结果亦同  

X = % 注意X为列向量  

10 5  -1  

>> X=B*inv(A); % 也能够反矩阵运算求解 

  

3.基本xy平面画图命令  

    MATLAB不但擅长於矩阵相关的数值运算,也适合用在各种科学目视表示(Scientificvisualization)。

    本节将介绍MATLAB基本xy平面及xyz空间的各项画图命令,包括一维曲线及二维曲面的绘制、列印及存档。  

    plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x 及y座标。

下例可画出一条正弦曲线:  

close all;

x=linspace(0, 2*pi, 100); % 100个点的x座标  

y=sin(x); % 相应的y座标  

plot(x,y);  

 

小整理:MATLAB基本画图函数

plot: x轴和y轴均为线性刻度(Linear scale)

loglog: x轴和y轴均为对数刻度(Logarithmic scale)

semilogx: x轴为对数刻度,y轴为线性刻度

semilogy: x轴为线性刻度,y轴为对数刻度  

若要画出多条曲线,仅仅需将座标对依次放入plot函数就可以:  

plot(x, sin(x), x, cos(x));  

 

若要改变颜色,在座标对後面加上相关字串就可以:  

plot(x, sin(x), ‘c‘, x, cos(x), ‘g‘);  

 

若要同一时候改变颜色及图线型态(Line style),也是在座标对後面加上相关字串就可以: 

plot(x, sin(x), ‘co‘, x, cos(x), ‘g*‘);  

 

小整理:plot画图函数的叁数 字元 颜色字元 图线型态y 黄色. 点k 黑色o 圆w 白色x  xb 蓝色+ +g 绿色* *r 红色- 实线c 亮青色: 点线m 锰紫色-. 点虚线-- 虚线 

图形完毕後,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围:  

axis([0, 6, -1.2, 1.2]); 

 

此外,MATLAB也可对图形加上各种注解与处理:  

xlabel(‘Input Value‘); % x轴注解  

ylabel(‘Function Value‘); % y轴注解  

title(‘Two Trigonometric Functions‘); % 图形标题  

legend(‘y = sin(x)‘,‘y = cos(x)‘); % 图形注解  

grid on; % 显示格线  

 

我们可用subplot来同一时候画出数个小图形於同一个视窗之中:  

subplot(2,2,1); plot(x, sin(x));  

subplot(2,2,2); plot(x, cos(x));  

subplot(2,2,3); plot(x, sinh(x));  

subplot(2,2,4); plot(x, cosh(x));  

 

MATLAB还有其它各种二维画图函数,以适合不同的应用,详见下表。  

小整理:其它各种二维画图函数

bar 长条图

errorbar 图形加上误差范围

fplot 较精确的函数图形

polar 极座标图

hist 累计图

rose 极座标累计图

stairs 阶梯图

stem 针状图

fill 实心图

feather 羽毛图

compass 罗盘图

quiver 向量场图 

下面我们针对每一个函数举例。 

当资料点数量不多时,长条图是非常适合的表示方式:  

close all; % 关闭全部的图形视窗  

x=1:10;   

y=rand(size(x));   

bar(x,y);  

 

假设已知资料的误差量,就可用errorbar来表示。下例以单位标准差来做资的误差量:

x = linspace(0,2*pi,30);   

y = sin(x);  

e = std(y)*ones(size(x));  

errorbar(x,y,e)  

 

对於变化剧烈的函数,可用fplot来进行较精确的画图,会对剧烈变化处进行较密集的取样,例如以下例:  

fplot(‘sin(1/x)‘, [0.02 0.2]); % [0.02 0.2]是画图范围  

 

若要产生极座标图形,可用polar:  

theta=linspace(0, 2*pi);  

r=cos(4*theta);   

polar(theta, r);  

 

对於大量的资料,我们可用hist来显示资料的分 情况和统计特性。以下几个命令可用来验证randn产生的高斯乱数分 :  

x=randn(5000, 1); % 产生5000个 m=0,s=1 的高斯乱数  

hist(x,20); % 20代表长条的个数  

 

rose和hist非常接近,仅仅只是是将资料大小视为角度,资料个数视为距离,并用极座标绘制

表示:  

x=randn(1000, 1);  

rose(x);  

 

stairs可画出阶梯图:  

x=linspace(0,10,50);  

y=sin(x).*exp(-x/3);  

stairs(x,y);  

 

stems可产生针状图,常被用来绘制数位讯号:  

x=linspace(0,10,50);  

y=sin(x).*exp(-x/3);  

stem(x,y);  

 

stairs将资料点视为多边行顶点,并将此多边行涂上颜色:  

x=linspace(0,10,50);   

y=sin(x).*exp(-x/3);  

fill(x,y,‘b‘); % ‘b‘为蓝色  

 

feather将每个资料点视复数,并以箭号画出:   

theta=linspace(0, 2*pi, 20);  

z = cos(theta)+i*sin(theta);  

feather(z);  

 

compass和feather非常接近,仅仅是每一个箭号的起点都在圆点:  

theta=linspace(0, 2*pi, 20);  

z = cos(theta)+i*sin(theta);  

compass(z);  

 

  

4.基本XYZ立体画图命令  

在科学目视表示(Scientific visualization)中,三度空间的立体图是一个很重要的技巧。本章将介绍MATLAB基本XYZ三度空间的各项画图命令。   

mesh和plot是三度空间立体画图的基本命令,mesh可画出立体网状图,plot则可画出立体曲面图,两者产生的图形都会依高度而有不同颜色。

下列命令可画出由函数<图片>形成的立体网状图:  

x=linspace(-2, 2, 25); % 在x轴上取25点  

y=linspace(-2, 2, 25); % 在y轴上取25点  

[xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵  

zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵  

mesh(xx, yy, zz); % 画出立体网状图  

 

surf和mesh的使用方法类似:   

x=linspace(-2, 2, 25); % 在x轴上取25点  

y=linspace(-2, 2, 25); % 在y轴上取25点  

[xx,yy]=meshgrid(x, y); % xx和yy都是21x21的矩阵   

zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵   

surf(xx, yy, zz); % 画出立体曲面图  

 

 

为了方便測试立体画图,MATLAB提供了一个peaks函数,可产生一个凹凸有致的曲面,包括了三个局部极大点及三个局部极小点  

要画出此函数的最快方法即是直接键入peaks:  

peaks  

 

z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...  

- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...  

- 1/3*exp(-(x+1).^2 - y.^2)  

我们亦可对peaks函数取点,再以各种不同方法进行画图。

meshz可将曲面加上围裙:  

[x,y,z]=peaks;  

meshz(x,y,z);  

axis([-inf inf -inf inf -inf inf]);  

 

waterfall可在x方向或y方向产生水流效果:  

[x,y,z]=peaks;  

waterfall(x,y,z);  

axis([-inf inf -inf inf -inf inf]);  

 

 

下列命令产生在y方向的水流效果:  

[x,y,z]=peaks;  

waterfall(x‘,y‘,z‘);  

axis([-inf inf -inf inf -inf inf]);  

 

meshc同一时候画出网状图与等高线:  

[x,y,z]=peaks;  

meshc(x,y,z);  

axis([-inf inf -inf inf -inf inf]);  

 

 

surfc同一时候画出曲面图与等高线:  

[x,y,z]=peaks;  

surfc(x,y,z);  

axis([-inf inf -inf inf -inf inf]);  

 

 

 

contour3画出曲面在三度空间中的等高线:  

contour3(peaks, 20);  

axis([-inf inf -inf inf -inf inf]);  

 

 

contour画出曲面等高线在XY平面的投影:  

contour(peaks, 20);  

 

plot3可画出三度空间中的曲线:  

t=linspace(0,20*pi, 501);   

plot3(t.*sin(t), t.*cos(t), t);  

 

亦可同一时候画出两条三度空间中的曲线: 

t=linspace(0, 10*pi, 501);  

plot3(t.*sin(t), t.*cos(t), t, t.*sin(t), t.*cos(t), -t);  

 

 

4.三维网图的高级处理

1.      消隐处理

例.比較网图消隐前后的图形

z=peaks(50);

subplot(2,1,1);

mesh(z);

title(‘消隐前的网图‘)

hidden off

subplot(2,1,2)

mesh(z);

title(‘消隐后的网图‘)

hidden on

colormap([0 0 1])

 

 

2.      裁剪处理

利用不定数NaN的特点,能够对网图进行裁剪处理

例.图形裁剪处理

P=peaks(30);

subplot(2,1,1);

mesh(P);

title(‘裁剪前的网图‘)

subplot(2,1,2);

P(20:23,9:15)=NaN*ones(4,7);       %剪孔

meshz(P)                        %垂帘网线图

title(‘裁剪后的网图‘)

colormap([0 0 1])                  %蓝色网线

 

注意裁剪时矩阵的相应关系,即大小一定要同样.

 

 

3.      三维旋转体的绘制

为了一些专业用户能够更方便地绘制出三维旋转体,MATLAB专门提供了2个函数:柱面函数cylinder和球面函数sphere

(1)   柱面图

柱面图绘制由函数cylinder实现.

[X,Y,Z]=cylinder(R,N)  此函数以母线向量R生成单位柱面.母线向量R是在单位高度里等分刻度上定义的半径向量.N为旋转圆周上的分格线的条数.能够用surf(X,Y,Z)来表示此柱面.

[X,Y,Z]=cylinder(R)或[X,Y,Z]=cylinder此形式为默认N=20且R=[1 1]

 

例.柱面函数演示举例

x=0:pi/20:pi*3;

r=5+cos(x);

[a,b,c]=cylinder(r,30);

mesh(a,b,c)

 

 


 


例.旋转柱面图.

r=abs(exp(-0.25*t).*sin(t));

t=0:pi/12:3*pi;

r=abs(exp(-0.25*t).*sin(t));

[X,Y,Z]=cylinder(r,30);

mesh(X,Y,Z)

colormap([1 0 0])

 

 


(2).球面图

球面图绘制由函数sphere来实现

[X,Y,Z]=sphere(N)             此函数生成3个(N+1)*(N+1)的矩阵,利用函数        surf(X,Y,Z) 可产生单位球面.

[X,Y,Z]=sphere         此形式使用了默认值N=20.

Sphere(N)             仅仅是绘制了球面图而不返回不论什么值.

例.绘制地球表面的气温分布示意图.

[a,b,c]=sphere(40);

t=abs(c);

surf(a,b,c,t);

axis(‘equal‘)   %此两句控制坐标轴的大小同样.

axis(‘square‘)

colormap(‘hot‘)

 

http://www.5678520.com/kaiwangdian/130.html 

http://www.5678520.com/kaiwangdian/129.html 

http://www.5678520.com/kaiwangdian/128.html 

http://www.5678520.com/kaiwangdian/127.html 

http://www.5678520.com/kaiwangdian/126.html 

http://www.lianzhiwei.com/News/389/20122116.html 

http://www.lianzhiwei.com/News/389/20122115.html 

http://www.lianzhiwei.com/News/389/20122114.html 

http://www.lianzhiwei.com/News/389/20122113.html 

http://www.lianzhiwei.com/News/389/20122112.html 


MATLAB新手教程