首页 > 代码库 > 进程与线程的一个复杂解释
进程与线程的一个复杂解释
关于进程和线程,面试的时候被问了两次都没有答出来。第一次问完稍微看了下概念,并没有完全理解所以也没有记住,所以第二次被问到的时候也没回答出来o(╯□╰)o。。
所以这次把这个问题彻底解决一下。
标题是模仿阮一峰大大的“进程与线程的一个简单解释”,见http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html,里面比喻得很形象。
- 定义
进程(英语:process),是计算机中已运行程序的实体。进程为曾经是分时系统的基本运作单位。在面向进程设计的系统(如早期的UNIX,Linux 2.4及更早的版本)中,进程是程序的基本执行实体;在面向线程设计的系统(如当代多数操作系统、Linux 2.6及更新的版本)中,进程本身不是基本运行单位,而是线程的容器。程序本身只是指令、数据及其组织形式的描述,进程才是程序(那些指令和数据)的真正运行实例。若干进程有可能与同一个程序相关系,且每个进程皆可以同步(循序)或异步(平行)的方式独立运行。现代计算机系统可在同一段时间内以进程的形式将多个程序加载到内存中,并借由时间共享(或称时分复用),以在一个处理器上表现出同时(平行性)运行的感觉。同样的,使用多线程技术(多线程即每一个线程都代表一个进程内的一个独立执行上下文)的操作系统或计算机架构,同样程序的平行线程,可在多CPU主机或网络上真正同时运行(在不同的CPU上)。
线程(英语:thread)是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。在Unix System V及SunOS中也被称为轻量进程(lightweight processes),但轻量进程更多指内核线程(kernel thread),而把用户线程(user thread)称为线程。
线程是独立调度和分派的基本单位。线程可以操作系统内核调度的内核线程,如Win32线程;由用户进程自行调度的用户线程,如Linux平台的POSIX Thread;或者由内核与用户进程,如Windows 7的线程,进行混合调度。
同一进程中的多条线程将共享该进程中的全部系统资源,如虚拟地址空间,文件描述符和信号处理等等。但同一进程中的多个线程有各自的调用栈(call stack),自己的寄存器环境(register context),自己的线程本地存储(thread-local storage)。
一个进程可以有很多线程,每条线程并行执行不同的任务。
在多核或多CPU,或支持Hyper-threading的CPU上使用多线程程序设计的好处是显而易见,即提高了程序的执行吞吐率。在单CPU单核的计算机上,使用多线程技术,也可以把进程中负责IO处理、人机交互而常被阻塞的部分与密集计算的部分分开来执行,编写专门的workhorse线程执行密集计算,从而提高了程序的执行效率。
以上来自维基百科。
- 理解
宏观上,从程序和进程的联系上理解进程:从一定意义上讲,进程就是一个应用程序在处理机上的一次执行过程,它是一个动态的概念。 进程是一个具有独立功能的程序关于某个数据集合的一次运行活动。它可以申请和拥有系统资源,是一个动态的概念,是一个活动的实体。它不只是程序的代码,还包括当前的活动,通过程序计数器的值和处理寄存器的内容来表示。 进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体,我们称其为进程。
然后,从进程和线程的关系上理解线程:线程是进程中的一部分,进程包含多个线程在运行。 通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源。在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由现代计算机系统可在同一段时间内以进程的形式将多个程序加载到内存中,并借由时间共享(或称时分复用),以在一个处理器上表现出同时(平行性)运行的感觉。同样的,使用多线程技术(多线程即每一个线程都代表一个进程内的一个独立执行上下文)的操作系统或计算机架构,同样程序的平行线程,可在多CPU主机或网络上真正同时运行(在不同的CPU上)可知,并不是所有的操作系统都有线程的。于是,这就涉及到线程出现的原因。
看下面来自知乎问题“多线程有什么用”的回答。
作者:pansz链接:https://www.zhihu.com/question/19901763/answer/13299543来源:知乎著作权归作者所有,转载请联系作者获得授权。这么解释问题吧:
1。单进程单线程:一个人在一个桌子上吃菜。
2。单进程多线程:多个人在同一个桌子上一起吃菜。
3。多进程单线程:多个人每个人在自己的桌子上吃菜。
多线程的问题是多个人同时吃一道菜的时候容易发生争抢,例如两个人同时夹一个菜,一个人刚伸出筷子,结果伸到的时候已经被夹走菜了。。。此时就必须等一个人夹一口之后,在还给另外一个人夹菜,也就是说资源共享就会发生冲突争抢。
1。对于 Windows 系统来说,【开桌子】的开销很大,因此 Windows 鼓励大家在一个桌子上吃菜。因此 Windows 多线程学习重点是要大量面对资源争抢与同步方面的问题。
2。对于 Linux 系统来说,【开桌子】的开销很小,因此 Linux 鼓励大家尽量每个人都开自己的桌子吃菜。这带来新的问题是:坐在两张不同的桌子上,说话不方便。因此,Linux 下的学习重点大家要学习进程间通讯的方法。
--
补充:有人对这个开桌子的开销很有兴趣。我把这个问题推广说开一下。
开桌子的意思是指创建进程。开销这里主要指的是时间开销。
可以做个实验:创建一个进程,在进程中往内存写若干数据,然后读出该数据,然后退出。此过程重复 1000 次,相当于创建/销毁进程 1000 次。在我机器上的测试结果是:
UbuntuLinux:耗时 0.8 秒
Windows7:耗时 79.8 秒
两者开销大约相差一百倍。
这意味着,在 Windows 中,进程创建的开销不容忽视。换句话说就是,Windows 编程中不建议你创建进程,如果你的程序架构需要大量创建进程,那么最好是切换到 Linux 系统。
大量创建进程的典型例子有两个,一个是 gnu autotools 工具链,用于编译很多开源代码的,他们在 Windows 下编译速度会很慢,因此软件开发人员最好是避免使用 Windows。另一个是服务器,某些服务器框架依靠大量创建进程来干活,甚至是对每个用户请求就创建一个进程,这些服务器在 Windows 下运行的效率就会很差。这"可能"也是放眼全世界范围,Linux 服务器远远多于 Windows 服务器的原因。
--
再次补充:如果你是写服务器端应用的,其实在现在的网络服务模型下,开桌子的开销是可以忽略不计的,因为现在一般流行的是按照 CPU 核心数量开进程或者线程,开完之后在数量上一直保持,进程与线程内部使用协程或者异步通信来处理多个并发连接,因而开进程与开线程的开销可以忽略了。
另外一种新的开销被提上日程:核心切换开销。
现代的体系,一般 CPU 会有多个核心,而多个核心可以同时运行多个不同的线程或者进程。
当每个 CPU 核心运行一个进程的时候,由于每个进程的资源都独立,所以 CPU 核心之间切换的时候无需考虑上下文。
当每个 CPU 核心运行一个线程的时候,由于每个线程需要共享资源,所以这些资源必须从 CPU 的一个核心被复制到另外一个核心,才能继续运算,这占用了额外的开销。换句话说,在 CPU 为多核的情况下,多线程在性能上不如多进程。
因而,当前面向多核的服务器端编程中,需要习惯多进程而非多线程。
分析以上答案我得知了两点:1.在Windows中,进程的创建开销较大,因此 Windows 鼓励大家在一个桌子上吃菜。因此 Windows 多线程学习重点是要大量面对资源争抢与同步方面的问题。2.对于 Linux 系统来说,进程创建的开销很小,因此 Linux 鼓励大家尽量每个人都开自己的桌子吃菜。这带来新的问题是:坐在两张不同的桌子上,说话不方便。因此,Linux 下的学习重点大家要学习进程间通讯的方法。(……就是答主回答刚开始总结的那两点。)
到这里进程和线程的关系基本清晰了。
- 区别
接下来还需要回答的是差别。按我之前死记硬背的方法,根本记不住。只有理解原理,才能轻松记住嘛。所以继续找。
线程与进程的区别归纳:
a.地址空间和其它资源:进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
b.通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。
c.调度和切换:线程上下文切换比进程上下文切换要快得多。
对上述总结的理解。a,地址空间和其它资源,一个“其它资源”把问题搞的不清楚,其它资源是什么?_?orz用那个桌子吃饭的理论,桌子上的菜可以认为的这里的地址空间和其它资源了,但实体是什么,我还不知道。
于是找到了这个
来自http://laiyuanyuan7.blog.163.com/blog/static/15274321201241191321666/
线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。
线程拥有这许多共性的同时,还拥有自己的个性。有了这些个性,线程才能实现并发性。这些个性包括:
1.线程ID
每个线程都有自己的线程ID,这个ID在本进程中是唯一的。进程用此来标识线程。2.寄存器组的值
由于线程间是并发运行的,每个线程有自己不同的运行线索,当从一个线程切换到另一个线程上时,必须将原有的线程的寄存器集合的状态保存,以便将来该线程在被重新切换到时能得以恢复。3.线程的堆栈
堆栈是保证线程独立运行所必须的。
线程函数可以调用函数,而被调用函数中又是可以层层嵌套的,所以线程必须拥有自己的函数堆栈,使得函数调用可以正常执行,不受其他线程的影响。
4.错误返回码
由于同一个进程中有很多个线程在同时运行,可能某个线程进行系统调用后设置了errno值,而在该线程还没有处理这个错误,另外一个线程就在此时被调度器投入运行,这样错误值就有可能被修改。
所以,不同的线程应该拥有自己的错误返回码变量。
5.线程的信号屏蔽码
由于每个线程所感兴趣的信号不同,所以线程的信号屏蔽码应该由线程自己管理。但所有的线程都共享同样的信号处理器。
6.线程的优先级
由于线程需要像进程那样能够被调度,那么就必须要有可供调度使用的参数,这个参数就是线程的优先级。涉及多线程程序涉及的时候经常会出现一些令人难以思议的事情,用堆和栈分配一个变量可能在以后的执行中产生意想不到的结果,而这个结果的表现就是内存的非法被访问,导致内存的内容被更改。
理解这个现象的两个基本概念是:在一个进程的线程共享堆区,而进程中的线程各自维持自己堆栈。
另一运行机制就是如果声明一个成员变量如 char Name[200],随着这段代码调用的结束,Name在栈区的地址被释放,而如果是 char * Name = new char[200]; 情况则完全不同,除非显示调用delete否则 Name指向的地址不会被释放。
在B中如果用栈区 即采用临时变量的机制分配声明V和堆区,而者的结果是不同的。如果用栈区,如果变量地址为Am1-Am2这么大,退出B调用时候这段地址被释放,C函数可能将这段内存改写;这样当D执行的时候,从内存Am1-Am2中读取的内容就是被改过的了。
而如果用New(堆)分配,则不会出现那样的情况,因为没有显示对用delete并且堆对于线程共享,即2线程可以看到1线程在堆里分配的东西,所以不会发生误写。
这个问题是笔者在公司实习的时候发现的,因为当时刚刚涉及多线程程序设计,操作系统中如此简单的话题困扰笔者很久,希望可以对初涉C++多线程的读者有所帮助! 2)如果两个线程共享堆,而且都有可能执行内存分配和释放操作,就必须进行同步保护,这个和C类,R类,T类没有关系。你看到的例子两个线程应该是使用各自的堆。
在 windows 等平台上,不同线程缺省使用同一个堆,所以用 C 的 malloc (或者 windows 的 GlobalAlloc)分配内存的时候是使用了同步保护的。如果没有同步保护,在两个线程同时执行内存操作的时候会产生竞争条件,可能导致堆内内存管理混乱。比如两个线程分配了统一块内存地址,空闲链表指针错误等。
Symbian 的线程一般使用独立的堆空间。这样每个线程可以直接在自己的堆里分配和释放,可以减少同步所引入的开销。当线程退出的时候,系统直接回收线程的堆空间,线程内没有释放的内存空间也不会造成进程内的内存泄漏。
但是两个线程使用共用堆的时候,就必须用 critical section 或者 mutex 进行同步保护。否则程序崩溃时早晚的事。如果你的线程需要在共用堆上无规则的分配和释放任何数量和类型的对象,可以定制一个自己的 allcator,在 allocator 内部使用同步保护。线程直接使用这个 allocator 分配内存就可以了。这相当于实现自己的 malloc,free。但是更建议你重新审查一下自己的系统,因为这种情况大多数是不必要的。经过良好的设计,线程的本地堆应该能够满足大多数对象的需求。如果有某一类对象需要在共享堆上创建和共享,这种需求是比较合理的,可以在这个类的 new 和 delete 上实现共享保护。
嗯,所以,线程间共享而进程间独立的是什么呢?就是地址空间、进程代码段、数据段(全局变量)、进程打开的文件描述符、信号的处理器、进程的当前目录、进程用户ID、进程组ID等等吧。
然后理解b就容易了,线程间通信只有靠进程的数据段了,所以涉及到同步和互斥的问题(生产者消费者问题之类的)。进程间通信就是IPC(Inter-Process Communication),就是在Linux里的一大堆进程间通信的方法了。
理解c,线程调度和切换比进程快得多,这个显然吧,这也是线程出现的原因啊。
理解d,我觉得不用在意啊,这句话的意思就是在多线程操作系统里,线程才是操作系统调度和分配的基本单位。
嗯,下面再摘一段解释得比较好的
来自云风http://www.cnblogs.com/way_testlife/archive/2011/04/16/2018312.html
进程的执行过程是线状的,尽管中间会发生中断或暂停,但该进程所拥有的资源只为该线状执行过程服务。一旦发生进程上下文切换,这些资源都是要被保护起来的。这是进程宏观上的执行过程。而进程又可有单线程进程与多线程进程两种。我们知道,进程有 一个进程控制块 PCB ,相关程序段 和 该程序段对其进行操作的数据结构集 这三部分,单线程进程的执行过程在宏观上是线性的,微观上也只有单一的执行过程;而多线程进程在宏观上的执行过程同样为线性的,但微观上却可以有多个执行操作(线程),如不同代码片段以及相关的数据结构集。线程的改变只代表了 CPU 执行过程的改变,而没有发生进程所拥有的资源变化。出了 CPU 之外,计算机内的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。与进程控制表和 PCB 相似,每个线程也有自己的线程控制表 TCB ,而这个 TCB 中所保存的线程状态信息则要比 PCB 表少得多,这些信息主要是相关指针用堆栈(系统栈和用户栈),寄存器中的状态数据。进程拥有一个完整的虚拟地址空间,不依赖于线程而独立存在;反之,线程是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享分配给该进程的所有资源。
线程可以有效地提高系统的执行效率,但并不是在所有计算机系统中都是适用的,如某些很少做进程调度和切换的实时系统。使用线程的好处是有多个任务需要处理机处理时,减少处理机的切换时间;而且,线程的创建和结束所需要的系统开销也比进程的创建和结束要小得多。最适用使用线程的系统是多处理机系统和网络系统或分布式系统。
----------------------------------
1. 线程的执行特性。
线程只有 3 个基本状态:就绪,执行,阻塞。
线程存在 5 种基本操作来切换线程的状态:派生,阻塞,激活,调度,结束。
2. 进程通信。
单机系统中进程通信有 4 种形式:主从式,会话式,消息或邮箱机制,共享存储区方式。
主从式典型例子:终端控制进程和终端进程。
会话式典型例子:用户进程与磁盘管理进程之间的通信。
----------------------------------
嗯。差不多就是这些。
疑问点?
有人说是因此CPU运行速度非常快,会在极短时间内在不同任务间切换,进程间切换开销大而线程间切换小,所以采用多线程。也就是说,是为了充分利用同一CPU。
还有人说是为了充分利用多个CPU。
到底是哪一种?嗯,问题就是,线程的切换是在单个CPU上,还是如果有多个CPU,可以随意切换?
下面,接受考验的时候到了。如果我再一次被问到进程和线程之间的差别,我要怎么回答呢?
1.进程是运行态的程序,是动态的。
2.一个进程有上下文,创建进程和切换进程的上下文开销较大,所以有了线程。
3.于是,为了充分利用CPU,有了线程。
4.线程间共享的内容包括进程的代码段,共享的数据段(全局变量等),进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID……
进程与线程的一个复杂解释