首页 > 代码库 > 33. Search in Rotated Sorted Array (Array;Divide-and-Conquer)

33. Search in Rotated Sorted Array (Array;Divide-and-Conquer)

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

思路: 改动的二分法。有三种情况:正序、右侧rotate、左侧rotate。三种情况分别讨论。

技术分享

class Solution {public:    int search(vector<int>& nums, int target) {        return binarySearch(nums,0,nums.size()-1, target);    }        int binarySearch(vector<int>& nums, int start, int end, int target){        if(start>end){            return -1;        }                int mid = start+ ((end-start)>>1);        if(nums[mid]==target) return mid;                //正序        if(nums[mid]>=nums[start] && nums[mid]<nums[end]){ //mid可能会=start,所以这里要用>=            if(target < nums[mid]) return binarySearch(nums,start,mid-1,target); //mid+1或-1,每次至少舍弃一个数            else return binarySearch(nums,mid+1,end,target);        }                //右侧rotate        else if(nums[mid]>=nums[start] && nums[mid]>nums[end]){            if(target>=nums[start] && target<nums[mid]) return binarySearch(nums,start,mid-1,target);            else return binarySearch(nums,mid+1,end,target);        }                //左侧rotate        else{            if(target>=nums[start] || target<nums[mid]) return binarySearch(nums,start,mid-1,target);            else return binarySearch(nums,mid+1,end,target);        }    }};

 

33. Search in Rotated Sorted Array (Array;Divide-and-Conquer)