首页 > 代码库 > gzip
gzip
gzip是GNU zip的缩写,它是一个GNU自由软件的文件压缩程序, 也经常用来表示gzip这种文件格式。软件的作者是Jean-loup Gailly和Mark Adler。
gzip的基础是DEFLATE,DEFLATE是LZ77与哈夫曼编码的一个组合体。DEFLATE最初是作为LZW以及其它受专利保 护的数据压缩算法的 替代版本而设计的,当时那些专利限制了compress以及其它一些流行的归档工具的应用。
文件格式说明:
- 10字节的头,包含幻数、版本号以及时间戳
- 可选的扩展头,如原文件名
- 文件体,包括DEFLATE压缩的数据
- 8字节的尾注,包括CRC-32校验和以及未压缩的原始数据长度
尽管这种文件格式允许多个这样的数据拼接在一起,在解压时也把它们当作拼接在一起的数据,但是通常gzip仅仅用来压缩单个文件。多个文件的压缩归 档通常是首先将这些文件合并成一个tar文件,然后使用gzip进行压缩,最后生成的.tar.gz或 者.tgz文件,这就是所谓的“tar压缩包”或者“tarball”。
注意不要将gzipZIP压 缩格式混淆。ZIP也使用DEFLATE算法,而且可移植性更好,并且不需要一个外部的归档工具就可以包容多个文件。但是,由于ZIP对每个文件进行单独 压缩而没有利用文件间的冗余信息(固实压缩),所以ZIP的压缩率要稍逊于tar压缩包。
zlib是 DEFLATE算法的实现库,它的API同时支持 gzip文件格式以及一个简化的数据流格式。zlib数据流格式、DEFLATE以及gzip文件格式均已被标准化成了,分别是RFC 1950、RFC 1951以及RFC 1952。
下面内容转自http://blog.csdn.net/hguisu/article/details/7795435
gzip,zlib,以及图形格式png,使用的是同一个压缩算法deflate。我们通过对gzip源码的分析来对deflate压缩算法做一个详细的说明:
第一,gzip压缩算法基本原理的说明。
第二,gzip压缩算法实现方法的说明。
第三,gzip实现源码级的说明。
1. Gzip压缩算法的原理
gzip 对于要压缩的文件,首先使用LZ77算法的一个变种进行压缩,对得到的结果再使用Huffman编码的方法(实际上gzip根据情况,选择使用静态 Huffman编码或者动态Huffman编码,详细内容在实现中说明)进行压缩。所以明白了LZ77算法和Huffman编码的压缩原理,也就明白了 gzip的压缩原理。我们来对LZ77算法和Huffman编码做一个简单介绍。
1.1 LZ77算法简介
这一算法是由Jacob Ziv 和 Abraham Lempel 于 1977 年提出,所以命名为 LZ77。1.1.1 LZ77算法的压缩原理
如果文件中有两块内容相同的话,那么只要知道前一块的位置和大小,我们就可以确定后一块的内容。所以我们可以用(两者之间的距离,相同内容的长度)这样一 对信息,来替换后一块内容。由于(两者之间的距离,相同内容的长度)这一对信息的大小,小于被替换内容的大小,所以文件得到了压缩。
下面我们来举一个例子。
有一个文件的内容如下:
http://jiurl.yeah.net
http://jiurl.nease.net
其中有些部分的内容,前面已经出现过了,下面用()括起来的部分就是相同的部分。
http://jiurl.yeah.net
(http://jiurl.)nease(.net)
我们使用 (两者之间的距离,相同内容的长度) 这样一对信息,来替换后一块内容。
http://jiurl.yeah.net
(22,13)nease(23,4)其中:
(22,13)中,22为相同内容块与当前位置之间的距离,13为相同内容的长度。
(23,4)中,23为相同内容块与当前位置之间的距离,4为相同内容的长度。
由于(两者之间的距离,相同内容的长度)这一对信息的大小,小于被替换内容的大小,所以文件得到了压缩。
1.1.2 LZ77使用滑动窗口寻找匹配串
LZ77算法使用"滑动窗口"的方法,来寻找文件中的相同部分,也就是匹配串。我们先对这里的串做一个说明,它是指一个任意字节的序列,而不仅仅是可以在 文本文件中显示出来的那些字节的序列。这里的串强调的是它在文件中的位置,它的长度随着匹配的情况而变化。
LZ77从文件的开始处开始,一个字节一个字节的向后进行处理。一个固定大小的窗口(在当前处理字节之前,并且紧挨着当前处理字节),随着处理的字节不断 的向后滑动,就象在阳光下,飞机的影子滑过大地一样。对于文件中的每个字节,用当前处理字节开始的串,和窗口中的每个串进行匹配,寻找最长的匹配串。窗口 中的每个串指,窗口中每个字节开始的串。如果当前处理字节开始的串在窗口中有匹配串,就用(之间的距离,匹配长度) 这样一对信息,来替换当前串,然后从刚才处理完的串之后的下一个字节,继续处理。如果当前处理字节开始的串在窗口中没有匹配串,就不做改动的输出当前处理 字节。
处理文件中第一个字节的时候,窗口在当前处理字节之前,也就是还没有滑到文件上,这时窗口中没有任何内容,被处理的字节就会不做改动的输出。随着处理的不 断向后,窗口越来越多的滑入文件,最后整个窗口滑入文件,然后整个窗口在文件上向后滑动,直到整个文件结束。
1.1.3 使用LZ77算法进行压缩和解压缩
为了在解压缩时,可以区分“没有匹配的字节”和“(之间的距离,匹配长度)对”,我们还需要在每个“没有匹配的字节”或者“(之间的距离,匹配长度)对” 之前,放上一位,来指明是“没有匹配的字节”,还是“(之间的距离,匹配长度)对”。我们用0表示“没有匹配的字节”,用1表示“(之间的距离,匹配长 度)对”。
实际中,我们将固定(之间的距离,匹配长度)对中的,“之间的距离”和“匹配长度”所使用的位数。由于我们要固定“之间的距离”所使用的位数,所以我们才 使用了固定大小的窗口,比如窗口的大小为32KB,那么用15位(2^15=32K)就可以保存0-32K范围的任何一个值。实际中,我们还将限定最大的 匹配长度,这样一来,“匹配长度”所使用的位数也就固定了。
实际中,我们还将设定一个最小匹配长度,只有当两个串的匹配长度大于最小匹配长度时,我们才认为是一个匹配。我们举一个例子来说明这样做的原因。比如, “距离”使用15位,“长度”使用8位,那么“(之间的距离,匹配长度)对”将使用23位,也就是差1位3个字节。如果匹配长度小于3个字节的话,那么用 “(之间的距离,匹配长度)对”进行替换的话,不但没有压缩,反而会增大,所以需要一个最小匹配长度。
压缩:
从文件的开始到文件结束,一个字节一个字节的向后进行处理。用当前处理字节开始的串,和滑动窗口中的每个串进行匹配,寻找最长的匹配串。如果当前处理字节 开始的串在窗口中有匹配串,就先输出一个标志位,表明下面是一个(之间的距离,匹配长度) 对,然后输出(之间的距离,匹配长度) 对,然后从刚才处理完的串之后的下一个字节,继续处理。如果当前处理字节开始的串在窗口中没有匹配串,就先输出一个标志位,表明下面是一个没有改动的字 节,然后不做改动的输出当前处理字节,然后继续处理当前处理字节的下一个字节。
解压缩:
从文件开始到文件结束,每次先读一位标志位,通过这个标志位来判断下面是一个(之间的距离,匹配长度) 对,还是一个没有改动的字节。如果是一个(之间的距离,匹配长度)对,就读出固定位数的(之间的距离,匹配长度)对,然后根据对中的信息,将匹配串输出到 当前位置。如果是一个没有改动的字节,就读出一个字节,然后输出这个字节。
我们可以看到,LZ77压缩时需要做大量的匹配工作,而解压缩时需要做的工作很少,也就是说解压缩相对于压缩将快的多。这对于需要进行一次压缩,多次解压缩的情况,是一个巨大的优点。
1.2 Huffman编码简介
1.2.1 Huffman编码的压缩原理
我们把文件中一定位长的值看作是符号,比如把8位长的256种值,也就是字节的256种值看作是符号。我们根据这些符号在文件中出现的频率,对这些符号重 新编码。对于出现次数非常多的,我们用较少的位来表示,对于出现次数非常少的,我们用较多的位来表示。这样一来,文件的一些部分位数变少了,一些部分位数 变多了,由于变小的部分比变大的部分多,所以整个文件的大小还是会减小,所以文件得到了压缩。1.2.2 Huffman编码使用Huffman树来产生编码
要进行Huffman编码,首先要把整个文件读一遍,在读的过程中,统计每个符号(我们把字节的256种值看作是256种符号)的出现次数。然后根据符号 的出现次数,建立Huffman树,通过Huffman树得到每个符号的新的编码。对于文件中出现次数较多的符号,它的Huffman编码的位数比较少。 对于文件中出现次数较少的符号,它的Huffman编码的位数比较多。然后把文件中的每个字节替换成他们新的编码。
建立Huffman树:
把所有符号看成是一个结点,并且该结点的值为它的出现次数。进一步把这些结点看成是只有一个结点的树。
每次从所有树中找出值最小的两个树,为这两个树建立一个父结点,然后这两个树和它们的父结点组成一个新的树,这个新的树的值为它的两个子树的值的和。如此往复,直到最后所有的树变成了一棵树。我们就得到了一棵Huffman树。通过Huffman树得到Huffman编码:
这棵Huffman树,是一棵二叉树,它的所有叶子结点就是所有的符号,它的中间结点是在产生Huffman树的过程中不断建立的。
我们在Huffman树的所有父结点到它的左子结点的路径上标上0,右子结点的路径上标上1。
现在我们从根节点开始,到所有叶子结点的路径,就是一个0和1的序列。我们用根结点到一个叶子结点路径上的0和1的序列,作为这个叶子结点的Huffman编码。
我们可以看到,Huffman树的建立方法就保证了,出现次数多的符号,得到的Huffman编码位数少,出现次数少的符号,得到的Huffman编码位数多。
各个符号的Huffman编码的长度不一,也就是变长编码。对于变长编码,可能会遇到一个问题,就是重新编码的文件中可能会无法如区分这些编码。
比如,a的编码为000,b的编码为0001,c的编码为1,那么当遇到0001时,就不知道0001代表ac,还是代表b。出现这种问题的原因是a的编码是b的编码的前缀。
由于Huffman编码为根结点到叶子结点路径上的0和1的序列,而一个叶子结点的路径不可能是另一个叶子结点路径的前缀,所以一个Huffman编码不可能为另一个Huffman编码的前缀,这就保证了Huffman编码是可以区分的。
1.2.3 使用Huffman编码进行压缩和解压缩
为了在解压缩的时候,得到压缩时所使用的Huffman树,我们需要在压缩文件中,保存树的信息,也就是保存每个符号的出现次数的信息。
压缩:
读文件,统计每个符号的出现次数。根据每个符号的出现次数,建立Huffman树,得到每个符号的Huffman编码。将每个符号的出现次数的信息保存在压缩文件中,将文件中的每个符号替换成它的Huffman编码,并输出。
解压缩:
得到保存在压缩文件中的,每个符号的出现次数的信息。根据每个符号的出现次数,建立Huffman树,得到每个符号的Huffman编码。将压缩文件中的每个Huffman编码替换成它对应的符号,并输出。
2. Gzip压缩算法的实现
2.1 寻找匹配串的实现
为一个串寻找匹配串需要进行大量的匹配工作,而且我们还需要为很多很多个串寻找匹配串。所以 gzip 在寻找匹配串的实现中使用哈希表来提高速度。
要达到的目标是,对于当前串,我们要在它之前的窗口中,寻找每一个匹配长度达到最小匹配的串,并找出匹配长度最长的串。
在gzip 中,最小匹配长度为3,也就是说,两个串,最少要前3个字节相同,才能算作匹配。为什么最小匹配长度为3,将在后面说明。
gzip 对遇到的每一个串,首先会把它插入到一个“字典”中。这样当以后有和它匹配的串,可以直接从“字典”中查出这个串。
插入不是乱插,查也不是乱查。插入的时候,使用这个插入串的前三个字节,计算出插入的“字典”位置,然后把插入串的开始位置保存在这个“字典” 位置中。查出的时候,使用查出串的前三个字节,计算出“字典”位置,由于插入和查出使用的是同一种计算方法,所以如果两个串的前三个字节相同的话,计算出 的“字典”位置肯定是相同的,所以就可以直接在该“字典”位置中,取出以前插入时,保存进去的那个串的开始位置。于是查出串,就找到了一个串,而这个串的 前三个字节和自己的一样(其实只是有极大的可能是一样的,原因后面说明),所以就找到了一个匹配串。
如果有多个串,他们的前三个字节都相同,那么他们的“字典”位置,也都是相同的,他们将被链成一条链,放在那个“字典”位置上。所以,如果一个串,查到了一个“字典”位置,也就查到了一个链,所有和它前三个字节相同的串,都在这个链上。
也就是说,当前串之前的所有匹配串被链在了一个链上,放在某个“字典”位置上。而当前串使用它的前三个字节,进行某种计算,就可以得到这个“字典”位置 (得到了“字典”位置之后,它首先也把自己链入到这个链上),也就找到了链有它的所有匹配串的链,所以要找最长的匹配,也就是遍历这个链上的每一个串,看 和哪个串的匹配长度最大。
寻找匹配串的实现具体的说明
我们前面所说的“字典”,是一个数组,叫做head[](为什么叫head,后面进行说明)。
我们前面所说的“字典”位置,放在一个叫做ins_h的变量中。
我们前面所说的链,是在一个叫做prev[]的数组中。
插入head[ins_h]:
当前字节为第 strstart 个字节。通过第strstart,strstart+1,strstart+2,这三个字节,使用一个设计好的哈希函数算出ins_h,也就是插入的位置。然后将当前字节的位置,即strstart,保存在head[ins_h]中。
注意由 strstart,strstart+1,strstart+2,这三个字节(也就是strstart开始处的串的头三个字节,也就是当前字节和之后的两个字节)确定了ins_h。head[ins_h]中保存的又是strstart,也就是这个串开始的位置。
判断是否有匹配:
当前串的前三个字节,使用哈希函数算出ins_h,这时如果head[ins_h]的值不为空的话,那么head[ins_h]中的值,便是之前保存在这 里的另一个串的位置,并且这个串的前三个字节算出的ins_h,和当前串的前三个字节算出的ins_h相同。也就是说有可能有匹配。如果 head[ins_h]的值为空的话,那么肯定没有匹配。
gzip所使用的哈希函数:
gzip 所使用的哈希函数,用三个字节来计算一个ins_h,这是由于最小匹配为三个字节。
对于相同的三个字节,通过哈希函数得到的ins_h必然是相同的。
而不同的三个字节,通过哈希函数有可能得到同一个ins_h,不过这并不要紧,
当gzip发现head[ins_h]不空后,也就是说有可能有匹配串的话,会对链上的每一个串进行真正的串的比较。
所以一个链上的串,只是前三个字节用哈希函数算出的值相同,而并不一定前三个字节都是相同的。但是这样已经很大的缩小了需要进行串比较的范围。
我们来强调一下,前三个字节相同的串,必然在同一个链上。在同一个链上的,不一定前三个字节都相同。
不同的三个字节有可能得到同一个结果的原因是,三个字节,一共24位,有2^24种可能值。而三个字节的哈希函数的计算结果为15位,有2^15种可能 值。也就是说2^24种值,与2^15种值进行对应,必然是多对一的,也就是说,必然是有多种三个字节的值,用这个哈希函数计算出的值都是相同的。
而我们使用哈希函数的理由是,实际上,我们只是在一个窗口大小的范围内(后面将会看到)寻找匹配串,一个窗口的大小范围是很有限的,能出现的三个字节的值组合情况也是很有限的,将远远小于2^24,使用合适的哈希函数是高效的。
prev[]链的作用,前三个字节相同的所有的串所在的链:
head[ins_h] 中的值,有两个作用。一个作用,是一个前三个字节计算结果为ins_h的串的位置。另一个作用,是一个在prev[]数组中的索引,用这个索引在 prev[]中,将找到前一个前三个字节计算结果为ins_h的串的位置。即prev[head[ins_h]]的值(不为空的话)为前一个前三个字节计 算结果为ins_h的串的位置。
prev[]的值,也有两个作用。一个作用,是一个前三个字节计算结果为ins_h的串的位置。另一个作用,是一个在prev[]数组中的索引,用这个索 引在prev[]中,将找到前一个前三个字节计算结果为ins_h的串的位子哈。即prev[]的值(不为空的话)为前一个三个字节计算结果为ins_h 的串的位置。
直到prev[]为空,表示链结束。
我们来举一个例子,串,
0abcd abce,abcf_abcg
当处理到abcg的a时,由abcg的abc算出ins_h。
这时的head[ins_h]中为 11,即串"abcf abcg"的开始位置。
这时的prev[11]中为 6,即串"abce abcf abcg"的开始位置。
这时的prev[6]中为 1,即串"abcd abce abcf abcg"的开始位置。
这时的prev[1]中为 0。表示链结束了。
我们看到所有头三个字母为abc的串,被链在了一起,从head可以一直找下去,直到找到0。
prev[]链的建立:
gzip在每次处理当前串的时候,首先用当前串的前三个字节计算出ins_h,然后,就要把当前的串也插入到相应的链中,也就是把当前的串的位置,保存到 head[ins_h] 中,而此时,head[ins_h] 中(不空的话)为前一个串的开始位置。所以这时候需要把前一个串的位置,也就是原来的head[ins_h]放入链中。于是把现在的 head[ins_h]的值,用当前串的位置做索引,保存到 prev[] 中。然后再把 head[ins_h] 赋值为当前串的位置。
如果当前串的位置为strstart的话,那么也就是
prev[strstart] = head[ins_h];
head[ins_h] = strstart;
就这样,每次把一个串的位置加入到链中,链就形成了。
现在我们也就知道了,前三个字节计算得到同一ins_h的所有的串被链在了一起,head[ins_h]为链头,prev[]数组中放着的更早的串的位置。head数组和prev数组的名字,也正反应了他们的作用。
prev[]链的特点:
越向前(prev)与当前处理位置之间的距离越大。比如,当前处理串,算出了ins_h,而且head[ins_h]中的值不空,那么head[ins_h]就是离当前处理串距离最近的一个可能的匹配串,并且顺着prev[]向前所找到的串,越来距离越远。
匹配串中的字节开始的串的插入:
我们说过了,所有字节开始的串,都将被插入“字典”。对于确定了的匹配串,匹配串中的每个字节开始的串,仍要被插入“字典”,以便后面串可以和他们进行匹配。
注意:
对于文件中的第0字节,情况很特殊,它开始的串的位置为0。所以第0串的前三个字节计算出ins_h之后,在head[ins_h]中保存的位置为0。而 对是否有可能有匹配的判断,就是通过head[ins_h]不为0,并且head[ins_h]的值为一个串的开始位置。所以第0字节开始的串,由于其特 殊性,将不会被用来匹配,不过这种情况只会出现在第0个字节,所以通常不会造成影响,即使影响,也会极小。
例如,文件内容为
jiurl jiurl
找到的匹配情况如下,[]所括部分。
jiurl j[iurl]
2.2 懒惰啊匹配(lazy match)
对于当前字节开始的串,寻找到了最长匹配之后,gzip并不立即决定使用这个串进行替换。而是看看这个匹配长度是否满意,如果匹配长度不满意,而下一个字 节开始的串也有匹配串的话,那么gzip就找到下一个字节开始的串的最长匹配,看看是不是比现在这个长。这叫懒惰啊匹配。如果比现在这个长的话,将不使用 现在的这个匹配。如果比现在这个短的话,将确定使用现在的这个匹配。
我们来举个例子,串
0abc bcde abcde
处理到第10字节时,也就是"abcde"的a时,找到最长匹配的情况如下,[]所括部分。
0abc bcde [abc]de
这时,再看看下一个字节,也就是第11字节的情况,也就是‘abcde"的b,找到最长匹配的情况如下,[]所括部分。
0abc bcde a[bcde]
发现第二次匹配的匹配长度大,就不使用第一次的匹配串。我们也看到了如果使用第一次匹配的话,将错过更长的匹配串。
在满足懒惰啊匹配的前提条件下,懒惰啊匹配不限制次数,一次懒惰啊匹配发现了更长的匹配串之后,仍会再进行懒惰啊匹配,如果这次懒匹配,发现了更长的匹配串,那么上一次的懒匹配找到的匹配串就不用了。
进行懒惰啊匹配是有条件的。进行懒惰啊匹配必须满足两个条件,第一,下一个处理字节开始的串,要有匹配串,如果下一个处理字节开始的串没有匹配串的话,那 么就确定使用当前的匹配串,不进行懒匹配。第二,当前匹配串的匹配长度,gzip不满意,也就是当前匹配长度小于 max_lazy_match(max_lazy_match在固定的压缩级别下,有固定的值)。
讨论:
我们可以看到了做另外一次尝试的原因。如果当前串有匹配就使用了的话,可能错过更长匹配的机会。使用懒惰啊匹配会有所改善。
不过从我简单的分析来看,使用懒惰啊匹配对压缩率的改善似乎是非常有限的。2.3 大于64KB的文件,窗口的实现
窗口的实现:
实际中,当前串(当前处理字节开始的串)只是在它之前的窗口中寻找匹配串的,也就是说只是在它之前的一定大小的范围内寻找匹配串的。有这个限制的原因,将在后面说明。
gzip 的窗口大小为 WSIZE,32KB。
内存中有一个叫window[]的缓冲区,大小为2个窗口的大小,也就是64KB。文件的内容将被读到这个window[]中,我们在window[]上进行LZ77部分的处理,得到结果将放在其他缓冲区中。
gzip 对window[]中的内容,从开始处开始,一个字节一个字节的向后处理。有一个指针叫strstart(其实是个索引),指向当前处理字节,当当前处理 字节开始的串没有匹配时,不做改动的输出当前处理字节,strstart向后移动一个字节。当当前处理字节开始的串找到了匹配时,输出(匹配长度,相隔距 离)对,strstart向后移动匹配长度个字节。我们把strstart到window[]结束的这部分内容,叫做 lookahead buffer,超前查看缓冲区。这样叫的原因是,在我们处理当前字节的时候,就需要读出之后的字节来进行串的匹配。在一个变量lookahead中,保存 着超前查看缓冲区所剩的字节数。lookahead,最开始被初始化为整个读入内容的大小,随着处理的进行,strstart不断后移,超前查看缓冲区不 断减小,lookahead的值也不断的减小。
我们需要限制查找匹配串的范围为一个窗口的大小(这么做的原因后面说明),也就是说,只能在当前处理字节之前的32KB的范围内寻找匹配串。而,由于处理 是在2个窗口大小,也就是64KB大小的缓冲区中进行的,所以匹配链上的串与当前串之间的距离是很有可能超过32KB的。那么gzip是如何来实现这个限 制的呢?
gzip 通过匹配时的判断条件来实现这个限制。当当前串计算ins_h,发现head[ins_h]值不为空时(head[ins_h]为一个串的开始位置),说 明当前串有可能有匹配串,把这个值保存在 hash_head中。这时就要做一个限制范围的判断,strstart - hash_head <= 窗口大小,strstart-hash_head 是当前串和最近的匹配串之间的距离,(注意前面说过,链头和当前串的距离最近,越向前(prev)与当前处理位置之间的距离越大),也就是说要判断当前串 和距离最近的匹配串之间的距离是否在一个窗口的范围之内。如果不是的话,那么链上的其他串肯定更远,肯定更不在一个窗口的范围之内,就不进行匹配处理了。 如果是在一个窗口的范围之内的话,还需要在链上寻找最长的匹配串,在和每个串进行比较的时候,也需要判断当前串和该串的距离是否超过一个窗口的范围,超过 的话,就不能进行匹配。
实际中,gzip为了使代码简单点,距离限制要比一个窗口的大小还要小一点。
对于小于64KB的文件处理过程:
初始化的时候,会首先从文件中读64KB的内容到window[]中。
对于小于64KB的文件,整个文件都被读入到window[]中。在window[]上进行LZ77的处理,从开始直到文件结束。
大于64KB的文件处理过程:
每处理一个字节都要判断 lookahead < MIN_LOOKAHEAD ,也就是window中还没有处理的字节是否还够MIN_LOOKAHEAD ,如果不够的话,就会导致 fill_window(),从文件中读内容到window[]中。由于我们一次最大可能使用的超前查看缓冲区的大小为,最大匹配长度(258个字节,后 面进行说明)加上最小匹配长度,也就是下一个处理字节开始的串,可以找到一个最大匹配长度的匹配,发生匹配之后,还要预读一个最小匹配长度来计算之后的 ins_h。
不管是大于64KB的文件,还是小于64KB的文件,随着处理的进行,最终都要到文件的结束,在接近文件结束的时候,都会出现 lookahead < MIN_LOOKAHEAD ,对于这种情况,fill_window() 读文件,就再读不出文件内容了,于是fill_window()会设置一个标志eofile,表示文件就要结束了,之后肯定会接着遇到 lookahead < MIN_LOOKAHEAD ,不过由于设置了 eofile 标志,就不会再去试图读文件到window[]中了。
压缩开始之前的初始化,会从文件中读入64KB的内容到window[]中,窗口大小为32KB,也就是读入2窗的内容到window[]中。我们把第一窗的内容叫做w1_32k,第二窗的内容叫做w2_32k。
压缩不断进行,直到 lookahead < MIN_LOOKAHEAD,也就是处理到了64KB内容的接近结束部分,也就是如果再处理,超前查看缓冲区中的内容就可能不够了。由于 lookahead < MIN_LOOKAHEAD ,将执行 fill_window()。
fill_window() 判断是否压缩已经进行到了2窗内容快用完了,该把新的内容放进来了。如果是的话,
fill_window() 把第二窗的内容 w2_32k,复制到第一窗中,第一窗中的内容就被覆盖掉了,然后对match_start,strstart之类的索引,做修正。
然后更新匹配链的链头数组,head[],从头到尾过一遍,如果这个头中保存的串的位置,在w2_32k中,就对这个串的位置做修正。
如果这个头中保存的串的位置,在w1_32k中,就不要了,设为空,因为第一窗的内容我们已经覆盖掉了。
然后更新prev[]数组,从头到尾过一遍,如果某项的内容,在w2_32k中,就做修正。如果这项的内容,在w1_32k中,就不要了,设为空,因为第一窗的内容我们已经覆盖掉了。
最后fill_window()从文件中再读出一窗内容,也就是读出32KB的内容,复制到第二个窗中,注意第二个窗口中原来的内容,已经被复制到了第一个窗口中。
就这样,一窗窗的处理,直到整个文件结束。
分析:
到第二窗文件内容也快要处理完的时候,才会从文件中读入新的内容。而这时,第一窗中的所有串,对于当前处理字节和之后的字节来说,已经超出了一个窗口的距 离,当前处理字节和之后的字节不能和第一窗的串进行匹配了,也就是说第一窗的内容已经没有用了。所有插入字典的第一窗的串也已经没有用了。所以覆盖第一窗 的内容是合理的,将字典中第一窗的串的开始位置都设为空也是合理的。
将第二窗的内容复制到第一窗中,那么第二窗在字典中的所有索引都需要做相应的修正。
由于第二窗的内容已经复制到了第一窗中,所以我们可以将新的内容读入到第二窗中,新的内容之前的32KB的内容,就是原来的第二窗中的内容。而这时,做过 修正的字典中,仍然有原来第二窗中所有串的信息,也就是说,新的内容,可以继续利用前面一个窗口大小的范围之内的串,进行压缩,这也是合理的。2.4 其他问题1
现在来说明一下,为什么最小匹配长度为3个字节。这是由于,gzip 中,(匹配长度,相隔距离)对中,"匹配长度"的范围为3-258,也就是256种可能值,需要8bit来保存。"相隔距离"的范围为0-32K,需要 15bit来保存。所以一个(匹配长度,相隔距离)对需要23位,差一位3个字节。如果匹配串小于3个字节的话,使用(匹配长度,相隔距离)对进行替换, 不但没有压缩,反而还会增大。所以保存(匹配长度,相隔距离)对所需要的位数,决定了最小匹配长度至少要为3个字节。
最大匹配长度为258的原因是,综合各种因素,决定用8位来保存匹配长度,8位的最大值为255。实际中,我们在(匹配长度,相隔距离)对中的“匹配长度”保存的是,实际匹配长度-最小匹配长度,所以255对应的实际匹配长度为258。
在进行匹配时,会对匹配长度进行判断,保证到达最大匹配长度时,匹配就停止。也就是说,即使有两个串的相同部分超过了最大匹配长度,也只匹配到最大匹配长度。
保存相隔距离所用的位数和窗口大小是互相决定的,综合两方面各种因素,确定了窗口大小,也就确定了保存相隔距离所使用的位数。2.5 gzip 的 LZ77部分的实现要点
gzip 的 LZ77 部分的实现主要在函数 defalte() 中。
所使用的缓冲区
window[] 用来放文件中读入的内容。
l_buf[],d_buf[],flag_buf[] 用来放LZ77压缩得到的结果。
l_buf[] 中的每个字节是一个没有匹配的字节,或者是一个匹配的对中的匹配长度-3。l_buf[]共用了inbuf[]。
d_buf[] 中的每个unsigned short,是一个匹配的对中的相隔距离。
flag_buf[] 中每位是一个标志,用来指示l_buf[]中相应字节是没有匹配的字节,还是一个匹配的对中的匹配长度-3。
prev[],head[] 用来存放字典信息。实际上 head 为宏定义 prev+WSIZE。
初始化过程中,调用 lm_init()。
lm_init() 中,从输入文件中读入2个窗口大小,也就是64KB的内容到window[]中。lookahead 中为返回的读入字节数。使用window中的头两个字节,UPDATE_HASH,初始化ins_h。
deflate() 中,一个处理循环中,首先 INSERT_STRING 把当前串插入字典,INSERT_STRING 是一个宏,作用就是用哈希函数计算当前串的ins_h,然后把原来的head[ins_h]中的内容,链入链中(放到prev中),同时把原来的 head[ins_h]保存在hash_head变量中,用来后面进行匹配判断,然后把当前串的开始位置,保存在head[ins_h]中。
判断hash_head中保存的内容不为空,说明匹配链上有内容。调用 longest_match () 寻找匹配链上的最长匹配。
hash_head中保存的内容为空,说明当前字节开始的串,在窗口中没有匹配。
由于使用了lazy match,使得判断的情况更复杂。
匹配串的输出,或者是没有匹配的字节的输出,都是调用函数 ct_tally()。
对于匹配串,输出之后,还需要为匹配串中的每个字节使用 INSERT_STRING,把匹配串中每个字节开始的串都插入到字典中。
ct_tally()中,把传入的"没有匹配的字节"或者是"匹配长度-3"放到l_buf[]中,然后为以后的Huffman编码做统计次数的工作,如 果传入的是匹配情况,传入的参数中会有相隔距离,把相隔距离保存在d_buf[]中。根据传入的参数,可以判断是哪种情况,然后设置一个变量中相应的标志 位,每8个标志位,也就是够一个字节,就保存到flag_buf[]中。还有一些判断,我们将在后面进行说明。2.6 分块输出
LZ77 压缩的结果放在,l_buf[],d_buf[],flag_buf[] 中。
对于 LZ77 的压缩结果,可能使用一块输出或者分成多块输出(LZ77压缩一定的部分之后,就进行一次块输出,输出一块)。块的大小不固定。
输出的时候,会对LZ77的压缩结果,进行Huffman编码,最终把Huffman编码的结果输出到outbuf[]缓冲区中。
进行Huffman编码,并输出的工作,在 flush_block() 中进行。
在ct_tally()中进行判断,如果满足一些条件的话,当从ct_tally()中返回之后,就会对现有的LZ77的结果,进行Huffman编码,输出到一个块中。
在整个文件处理结束,deflate()函数要结束的时候,会把LZ77的结果,进行Huffman编码,输出到一个块中。
在ct_tally()中,每当l_buf[]中的字节数(每个字节是一个没有匹配的字节或者一个匹配长度)增加0x1000,也就是4096的时候。将估算压缩的情况,以判断现在结束这个块是否比较好,如果觉得比较好,就输出一个块。如果觉得不好,就先不输出。
而当l_buf[]满了的时候,或者d_buf[]满了的时候,将肯定对现有的LZ77压缩的结果,进行Huffman编码,输出到一个块中。
决定输出一块的话,会只针对这一块的内容,建立Huffman树,这一块内容将会被进行Huffman编码压缩,并被输出到outbuf[]中。如果是动 态Huffman编码,树的信息也被输出到outbuf[]中。输出之后,会调用init_block(),初始化一个新块,重新初始化一些变量,包括动 态树的结点被置0,也就是说,将为新块将来的Huffman树重新开始统计信息。
输出块的大小是不固定的,首先在进行Huffman编码之前,要输出的内容的大小就是不固定,要看情况,进行Huffman编码之后,就更不固定了。
块的大小不固定,那么解压缩的时候,如何区分块呢。编码树中有一个表示块结束的结点,EOB,在每次输出块的最后,输出这个结点的编码,所以解压缩的时候,当遇到了这个结点就表明一个块结束了。
每个块最开始的2位,用来指明本块使用的是哪种编码方式,00表示直接存储,01表示静态Huffman编码,10表示动态Huffman编码。接下来的1位,指明本块是否是最后一块,0表示不是,1表示是最后一块。
输出一个块,对现在字典中的内容没有影响,下一个块,仍将用之前形成的字典,进行匹配。2.7 静态Huffman编码与动态Huffman编码
静态Huffman编码就是使用gzip自己预先定义好了一套编码进行压缩,解压缩的时候也使用这套编码,这样不需要传递用来生成树的信息。
动态Huffman编码就是使用统计好的各个符号的出现次数,建立Huffman树,产生各个符号的Huffman编码,用这产生的Huffman编码进行压缩,这样需要传递生成树的信息。
gzip 在为一块进行Huffman编码之前,会同时建立静态Huffman树,和动态Huffman树,然后根据要输出的内容和生成的Huffman树,计算使 用静态Huffman树编码,生成的块的大小,以及计算使用动态Huffman树编码,生成块的大小。然后进行比较,使用生成块较小的方法进行 Huffman编码。
对于静态树来说,不需要传递用来生成树的那部分信息。动态树需要传递这个信息。而当文件比较小的时候,传递生成树的信息得不偿失,反而会使压缩文件变大。也就是说对于文件比较小的时候,就可能会出现使用静态Huffman编码比使用动态Huffman编码,生成的块小。2.8 编码的产生
deflate算法在Huffman树的基础上,又加入了几条规则,我们把这样的树称作deflate树,使得只要知道所有位长上的结点的个数,就可以得 到所有结点的编码。这样做的原因是,减少需要存放在压缩压缩文件中的用来生成树的信息。要想弄明白,deflate如何生成Huffman编码,一定要弄 明白一些Huffman树,和deflate树的性质,下面内容是对Huffman树和deflate树做了些简单研究得到的。
Huffman树的性质
1 叶子结点为n的话,那么整颗树的总结点为 2n-1。
简单证明说明,先证,最小的树,也就是只有三个结点,一个根节点,两个叶子节点的树符合。然后在任何符合的树上做最小的添加得到的树也符合。所以都符合。
2 最左边的叶子结点的编码为0,但是位长不一定。
deflate中增加了附加条件的huffman树的性质
1 同样位长的叶子结点的编码值为连续的,右面的总比左面的大1。
2 (n+1)位长最左面的叶子结点(也就是编码值最小的叶子结点)的值为n位长最右面的叶子结点(也就是编码值最大的叶子结点)的值+1,然后变长一位(也就是左移1位)。
3 n位长的叶子结点,最右面的叶子结点(也就是编码值最大的叶子结点)的值为最左面的叶子结点(也就是编码值最小的叶子结点)的值 加上 n位长的叶子结点的个数 减 1。
4 (n+1)位长最左面的叶子结点(也就是编码值最小的叶子结点)的值 为 n位长最左面的叶子结点(也就是编码值最小的叶子结点)的值 加上 n位长的叶子结点的个数,然后变长一位(也就是左移1位)。
还有一些树的性质,比如,树的某一深度上最大可能编码数。
从所有编码的位长,得到所有编码的编码:
统计每个位长上的编码个数放在bl_count[]中。
根据 bl_count[] 中的值,计算出每个位长上的最小编码值,放在 next_code[] 中。
计算方法为,code = (code + bl_count[bits-1]) << 1;
理由是deflate二叉树的性质,(n+1)位长最左面的叶子结点(也就是编码值最小的叶子结点)的值 为 n位长最左面的叶子结点(也就是编码值最小的叶子结点)的值 加上 n位长的叶子结点的个数,然后变长一位(也就是左移1位)。
然后按照代码值的顺序,为所有的代码编码。
编码方法为,某一位长对应的next_code[n],最开始是这个位长上最左边的叶子结点的编码,然后++,就是下一个该位长上下一个叶子结点的编码,依次类推,直到把这个位长上的叶子结点编码完。实际上的编码为bi_reverse(next_code[])。
这样编码的理由是,deflate二叉树的性质。
1. Gzip压缩算法的源码详解
main() 中调用函数 treat_file() 。
treat_file() 中打开文件,调用函数 zip()。注意这里的 work 的用法,这是一个函数指针。
zip() 中输出gzip文件格式的头,调用 bi_init,ct_init,lm_init,
其中在lm_init中将 head 初始化清0。初始化strstart为0。从文件中读入64KB的内容到window缓冲区中。
由于计算strstart=0时的ins_h,需要0,1,2这三个字节和哈希函数发生关系,所以在lm_init中,预读0,1两个字节,并和哈希函数发生关系。
然后lm_init调用 deflate()。
deflate() gzip的LZ77的实现主要deflate()中。
- /* global buffers */
- DECLARE(uch, inbuf, INBUFSIZ +INBUF_EXTRA);
- DECLARE(uch, outbuf, OUTBUFSIZ+OUTBUF_EXTRA);
- DECLARE(ush, d_buf, DIST_BUFSIZE);
- DECLARE(uch, window, 2L*WSIZE);
- #ifndef MAXSEG_64K
- DECLARE(ush, tab_prefix, 1L<<BITS);
- #else
- DECLARE(ush, tab_prefix0, 1L<<(BITS-1));
- DECLARE(ush, tab_prefix1, 1L<<(BITS-1));
- #endif
实际上定义了一些全局数组:inbuf,outbuf,d_buf,window,tab_prefix,tab_prefix0,tabfix1.1
入口程序:gzip-1.2.4/gzip.c
函数: int main (argc, argv)
int argc;
char **argv;
功能: 1)通过命令内容(gzip,gunzip,unzip等),设置操作类型(压缩或是解压缩)。
2)通过参数,设置一些全局变量的值,对我们而言,有用的是:ascii(表示为文本文件,可以根据本地的换行符来代替解压后的文件中的换行符)、decompress(表示进行解压操作)和level(转换操作的级别-进行更快的转换还是进行更大压缩比的转换,当然,这只对压缩而言)。
3)为输入、输出及窗口的缓冲分配内存。7
4)调用treat_file(argv[optind++]);对文件进行操作。
函数: local void treat_file(iname)
char *iname;
参数: 为文件的名称;
功能: 1)得到输入的文件的状态:name,size,time,mode等。
2)创建输出文件的名称。
3)当进行解压操作时,调用 local int get_method(in) 来得到gz文件的压缩方法。
4)如果命令行中的参数-l,则调用do_list()显示文件信息。
5)调用local int create_outfile()创建输出文件。
6) 调用(*work)(ifd, ofd)进行压缩、解压缩的操作。这时的work指针被get_method()
函数置为unzip()函数(解压时),或是为默认的zip()函数。在解压缩时,
这个过程是在循环中的,因为可能会包含多个文件。
函数: local int get_method(in)
int in; /* input file descriptor */
参数: 文件名称
功能: 1)验证第一第二字节是否为0x1F,0x8B。
2)验证第三字节是否为0x08(deflate)。
3)设置函数指针work = unzip。(work的默认值是zip)
4)得到做为flags的第四字节。
5)如果设置了第1、5、6、7位,则给出错误提示。(编号0到7是从最低位开始)
6)将第5到8字节中的时间值保存在全局变量time_stamp中。
7)跳过第9字节(压缩时采用的算法-更快或是比例更高)和第10字节(压缩时的操作系统)。
8)如果设置了flags的第1位,则得到当前文件的编号
9)如果设置了flags的第2位(存在有附加的内容),则得到附加内容的长度,并跳过这部分内容。
10)如果设置了flags的第3位(存在有原始文件的名称),则得到原始文件的名称。
11)如果设置了flags的第4位(存在一段不用解析的内容,是给人提供可读信息的),跳过这部分可读信息。
12) 设置头部信息的长度:header_bytes,包括了最后的CRC及文件长度部分。
返回: 函数压缩方法(一般为“deflate”,程序中的返回值为8)
在文件gzip-1.2.4/unzip.c中:
函数: int unzip(in, out)
int in, out; /* input and output file descriptors */
参数:为输入、输出文件。
功能: 1)初始化全局变量crc。
2)调用函数inflate()进行解码操作。
3)得到原来文件中保存的CRC及长度值。如果与当前计算出的值不同,则产生提示。
在文件gzip-1.2.4/inflate.c中
函数: int inflate()
说明: ulg bb; /* 是 bit buffer */
unsigned bk; /* 是bit buffer中还有多少位,即剩余的位数 */
功能: 1) 循环调用inflate_block(&e),一块一块的解压数据。
2)若bk>-8,即bb中有完整的字节,则将此字节放回输入中。
3)输出解压得到的内容。
函数: int inflate_block(e)
int *e; /* last block flag */
参数:如果是1,是说明当前块是最后一块。
功能:
1)得到第一位,这一位说明当前块是否为最后一块(0,不是;1,是)并相应的设置参数。
2)得到下两位的值:
0, 本块没有压缩,
1, 用固定的Huffman编码压缩,见RFC1951的3.2.6节。
2, 用动态的Huffman编码压缩,见RFC1951的3.2.7节。
3)根据前面得到的值,调用不同的函数解压:
inflate_stored(); 对于未压缩的数据,调用这个函数。
inflate_fixed(); 对于用固定的Huffman编码压缩的数据,调用这个函数。
inflate_dynamic(); 对于用动态的Huffman编码压缩的数据,调用这个函数。
函数: int inflate_stored()
功能: 处理非压缩的数据内容
1) 丢弃不足一字节的位。由于非压缩的数据中,内容都是以字节为单位的,所以原来按位读取的时候,会剩余不足一字节位内容,现在要去掉这些位。
2) 2)读入两字节的内容,其值是未压缩的数据长度。再读入两字节的内容,其值应该是前两字节所表示的长度的补码,若不是,则错误。
3) 3)逐字节的读入内容,并输出到输出文件中。
函数: int inflate_fixed()
功能: 用固定的Huffman编码压缩的数据
1) 为0至287的文字/length值设定编码长度:
Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through
10111111
144 - 255 9 110010000 through
111111111
256 - 279 7 0000000 through
0010111
280 - 287 8 11000000 through
11000111
2) 调用huft_build()建造文字/length值的Huffman树
3) 设置所有distance值(从0至29)的编码长度为5。
4) 调用huft_build()建造distance值的Huffman树
5) 调用函数inflate_codes()进行解码。
函数: int inflate_dynamic()
功能: 用动态的Huffman编码压缩的数据
1) 读入5位的值HLIT,算出nl = 257+HLIT。这是需要编码的最大值。
2) 读入5位的值HDIST,算出nd = 1+HDIST。这是distance的最大值。
3) 读入4位的值HCLEN,算出nb = 4+HCLEN。说明有多少种编码长度。
4) 再读入3*nb位,每三位的值表示用多少位来表示所对应的编码长度。
5) 调用huft_build()建造编码长度的Huffman树。
6) 利用这个Huffman树,对接下来的若干位解码出nl+nd个值,这些值依次是0~nl-1的编码长度(对于文字/length平说),及0~nd-1的编码长度(对于distance来说)。
7) 利用上面解码出的两组长度值,两次调用huft_build()函数,建造两个Huffman树 (一个是为文字/length,另一个是为distance)。
8) 调用函数inflate_codes()进行解码。
函数: int inflate_codes(tl, td, bl, bd)
struct huft *tl, *td; /* literal/length and distance decoder tables */
int bl, bd; /* number of bits decoded by tl[] and td[] */
参数: tl,td是进行Huffman编码解码时用到的结构体,由于length和distance用不同的编码方式,所以要有两个指针进行解码。
在两种编码中,用struct huft结构编码时,分别以bl,bd位进行编码。
功能: 用两个以经做好的链表来进行解码。
1) 解码一个值X,如果0<=X<=255,则X是一个字符,输出,循环1)。
2) 如果X==255,则说明块结束,函数返回。
3) X>255,则说明读到的是一个length值,根据这个值,及其后的附加位,得到真实的length值。
4) 继续读入一个值,这个值是distance的标志值,根据这个值及其后的附加位得到真实的distance。
5) 在已经输出的串中,向前查找distance个字节,拷贝length个字节到输出串的末尾。
6) 循环1)
函数: int huft_build() 和函数int huft_free()比较独立,可以直接引用,不再分析。
功能: int huft_build() :建立Huffman解码链表。
int huft_free() :清除链表。
在文件gzip-1.2.4/zip.c中:
函数: int zip(in, out)
int in, out; /* input and output file descriptors */
参数:为输入、输出文件。
功能:
1) 向输出写入三字节:0x1F 0x8B 0x08。
2) 向输出写入一个含有8个标志位的字节。
3) 向输出写入4字节的系统时间。
4) 初始化CRC的值。
5) 调用bi_init(out)初始化读入位串的程序。
6) 调用ct_init()进行分配内存,初始化变量表,保存原始文件信息的操作。
7) 调用lm_init()为新文件初始化“最长匹配”的程序。
8) 再向输出写入2字节,一个为额外的标志,一个为系统类型。
9) 如果需要,则保存原始文件名称。
10) 保存头部信息的长度。
11) 调用函数deflate()压缩。
12) 写入4字节的CRC值。
13) 写入4字节的原始内容长度值。
14)修改前面保存的头部信息长度的值。
在文件gzip-1.2.4/deflate.c中:
函数: ulg deflate()
功能: 压缩数据。此函数通过一些复杂的算法来进行压缩操作,可以直接引用。
1) 如果需要快速压缩,则调用函数deflate_fast(),然后返回。
2) 将当前内容插入到哈希表中,并查找最长匹配。
3) 若找到匹配内容,则输出<length,distence>对的编码,否则输出字符编码。