首页 > 代码库 > 单片机C语言的程序架构

单片机C语言的程序架构

初学单片机时,都会纠结于其各个模块功能应用,如串口(232,485)对各种功能IC的控制,电机控制PWM,中断应用,定时器应用,人机界面应用,CAN总线等. 这是一个学习过程中必需的阶段,是基本功。很庆幸,在参加电子设计大赛赛前培训时,MCU周围的控制都训练的很扎实。经过这个阶段后,后来接触不同的MCU就会发现,都大同小异,各有各的优势而已,学任何一种新的MCU都很容易入手包括一些复杂的处理器。而且对MCU的编程控制会提升一个高度概况——就是对各种外围进行控制(如果是对复杂算法的运算就会 
DSP了),而外围与MCU的通信方式一般也就几种时序:IIC,SPI,intel8080,M6800。这样看来MCU周围的编程就是一个很简单的东西了。
然而这只是嵌入式开发中的一点皮毛而已,在接触过多种MCU,接触过复杂设计要求,跑过操作系统等等后,我们在回到单片机的裸机开发时,就不知不觉的就会考虑到整个程序设计的架构问题;一个好的程序架构,是一个有经验的工程师和一个初学者的分水岭。
以下是我对单片机程序框架以及开发中一些常用部分的认识总结:
任何对时间要求苛刻的需求都是我们的敌人,在必要的时候我们只有增加硬件成本来消灭它;比如你要8个数码管来显示,我们在没有相关的硬件支持的时候必须用MCU以动态扫描的方式来使其工作良好;而动态扫描将或多或少的阻止了MCU处理其他的事情。在MCU负担很重的场合,我会选择选用一个类似max8279外围ic来解决这个困扰;
然而庆幸的是,有着许多不是对时间要求苛刻的事情:
例如键盘的扫描,人们敲击键盘的速率是有限的,我们无需实时扫描着键盘,甚至可以每隔几十ms才去扫描一下;然而这个几十ms的间隔,我们的MCU还可以完成许多的事情;
单片机虽然是裸机奔跑,但是往往现实的需要决定了我们必须跑出操作系统的姿态——多任务程序;
比如一个常用的情况有4个任务:
1 键盘扫描;
2 LED数码管显示;
3 串口数据需要接受和处理;
4 串口需要发送数据;
如何来构架这个单片机的程序将是我们的重点;

读书时代的我会把键盘扫描用查询的方式放在主循环中,而串口接收数据用中断,在中断服务函数中组成相应的帧格式后置位相应的标志位,在主函数的循环中进行数据的处理,串口发送数据以及led的显示也放在主循环中;

这样整个程序就以标志变量的通信方式,相互配合的在主循环和后台中断中执行;
然而必须指出其不妥之处:
每个任务的时间片可能过长,这将导致程序的实时性能差。如果以这样的方式在多加几个任务,使得一个循环的时间过长,可能键盘扫描将很不灵敏。所以若要建立 一个良好的通用编程模型,我们必须想办法,消去每个任务中费时间的部分以及把每个任务再次分解;下面来细谈每个任务的具体措施:
1 键盘扫描
键盘扫描是单片机的常用函数,以下指出常用的键盘扫描程序中,严重阻碍系统实时性能的地方;
众所周知,一个键按下之后的波形是这样的(假定低有效):
在有键按下后,数据线上的信号出现一段时间的抖动,然后为低,然后当按键释放时,信号抖动一段时间后变高。当然,在数据线为低或者为高的过程中,都有可能出现一些很窄的干扰信号。
unsigned char kbscan(void)
{
unsigned char sccode,recode;
P2=0xf8;
if ((P2&0xf8)!=0xf8)
{
delay(100); //延时20ms去抖--------这里太费时了,很糟糕
if((P2&0xf8)!=0xf8)
{
sccode=0xfe;
while((sccode&0x08)!=0)
{
P2=sccode;
if ((P2&0xf8)!=0xf8)
break;
sccode=(sccode<<1)|0x01;
}
recode=(P2&0xf8)|0x0f;
return(sccode&recode);
}
}
return (KEY_NONE);
}
键盘扫描是需要软件去抖的,这没有争议,然而该函数中用软件延时来去抖(ms级别的延时),这是一个维持系统实时性能的一个大忌讳;
一般还有一个判断按键释放的代码
While( kbscan() != KEY_NONE)
; //死循环等待
这样很糟糕,如果把键盘按下一直不放,这将导致整个系统其它的任务也不能执行,这将是个很严重的bug。
有人会这样进行处理:
While(kbsan() != KEY_NONE )
{
Delay(10);
If(Num++ > 10)
Break;
}
即在一定得时间内,如果键盘一直按下,将作为有效键处理。这样虽然不导致整个系统其它任务不能运行,但也很大程度上,削弱了系统的实时性能,因为他用了延时函数;




我们用两种有效的方法来解决此问题:
1 在按键功能比较简单的情况下,我们仍然用上面的kbscan()函数进行扫描,只是把其中去抖用的软件延时去了,把去抖以及判断按键的释放用一个函数来处理,它不用软件延时,而是用定时器的计时(用一般的计时也行)来完成;代码如下
void ClearKeyFlag(void)
{
KeyDebounceFlg = 0;
KeyReleaseFlg = 0;
}

void ScanKey(void)
{
++KeyDebounceCnt;//去抖计时(这个计时也可以放在后台定时器计时函数中处理)
KeyCode = kbscan();
if (KeyCode != KEY_NONE)
{
if (KeyDebounceFlg)//进入去抖状态的标志位
{
if (KeyDebounceCnt > DEBOUNCE_TIME)//大于了去抖规定的时间
{
if (KeyCode == KeyOldCode)//按键依然存在,则返回键值
{
KeyDebounceFlg = 0;
KeyReleaseFlg = 1;//释放标志
return; //Here exit with keycode
}
ClearKeyFlag(); //KeyCode != KeyOldCode,只是抖动而已
}
}else{
if (KeyReleaseFlg == 0)
{
KeyOldCode = KeyCode;
KeyDebounceFlg = 1;
KeyDebounceCnt = 0;
}else{
if (KeyCode != KeyOldCode)
ClearKeyFlag();
}
}
}else{
ClearKeyFlag();//没有按键则清零标志
}
KeyCode = KEY_NONE;
}


在按键情况较复杂的情况,如有长按键,组合键,连键等一些复杂功能的按键时候,我们跟倾向于用状态机来实现键盘的扫描

//avr 单片机 中4*3扫描状态机实现

char read_keyboard_FUN2()

{

static char key_state = 0, key_value, key_line,key_time;

char key_return = No_key,i;

switch (key_state)

{

case 0: //最初的状态,进行3*4的键盘扫描

key_line = 0b00001000;

for (i=1; i<=4; i++) // 扫描键盘

{

PORTD = ~key_line; // 输出行线电平

PORTD = ~key_line; // 必须送2次!!!(注1)

key_value = http://www.mamicode.com/Key_mask & PIND; // 读列电平 >
if (key_value =http://www.mamicode.com/= Key_mask)

key_line <<= 1; // 没有按键,继续扫描

else

{

key_state++; // 有按键,停止扫描

break; // 转消抖确认状态

}

}

break;

case 1: //此状态来判断按键是不是抖动引起的

if (key_value =http://www.mamicode.com/= (Key_mask & PIND)) // 再次读列电平, >
{

key_state++; // 转入等待按键释放状态

key_time=0;

}

else

key_state--; // 两次列电平不同返回状态0,(消抖处理)

break;

case 2: // 等待按键释放状态

PORTD = 0b00000111; // 行线全部输出低电平

PORTD = 0b00000111; // 重复送一次

if ( (Key_mask & PIND) == Key_mask)

{

key_state=0; // 列线全部为高电平返回状态0

key_return= (key_line | key_value);//获得了键值

}

else if(++key_time>=100)//如果长时间没有释放

{

key_time=0;

key_state=3;//进入连键状态

key_return= (key_line | key_value);

}

break;

case 3://对于连键,每隔50ms就得到一次键值,windows xp 系统就是这样做的

PORTD = 0b00000111; // 行线全部输出低电平

PORTD = 0b00000111; // 重复送一次

if ( (Key_mask & PIND) == Key_mask)

key_state=0; // 列线全部为高电平返回状态0

else if(++key_time>=5) //每隔50MS为一次连击的按键

{

key_time=0;

key_return= (key_line | key_value);

}

break;

}

return key_return;

}


以上用了4个状态,一般的键盘扫描只用前面3个状态就可以了,后面一个状态是为增加“连键”功能设计的。连键——即如果按下某个键不放,则迅速的多次响应 该键值,直到其释放。在主循环中每隔10ms让该键盘扫描函数执行一次即可;我们定其时限为10ms,当然要求并不严格。


2 数码管的显示

一般情况下我们用的八位一体的数码管,采用动态扫描的方法来完成显示;非常庆幸人眼在高于50hz以上的闪烁时发现不了的。所以我们在动态扫描数码管的间 隔时间是充裕的。这里我们定其时限为4ms(250HZ) ,用定时器定时为2ms,在定时中断程序中进行扫描的显示,每次只显示其中的一位;当然时限也可以弄长一些,更推荐的方法是把显示函数放入主循环中,而定 时中断中置位相应的标志位即可;


// Timer 0 比较匹配中断服务,4ms定时

interrupt [TIM0_COMP] void timer0_comp_isr(void)

{

display(); // 调用LED扫描显示

……………………

}

void display(void) // 8位LED数码管动态扫描函数

{

PORTC = 0xff; // 这里把段选都关闭是很必要的,否则数码管会产生拖影

PORTA = led_7[dis_buff[posit]];

PORTC = position[posit];

if (++posit >=8 )

posit = 0;

}

3 串口接收数据帧

串口接收时用中断方式的,这无可厚非。但如果你试图在中断服务程序中完成一帧数据的接收就麻烦大了。永远记住,中断服务函数越短越好,否则影响这个程序的 实时性能。一个数据帧一般包括若干个字节,我们需要判断一帧是否完成,校验是否正确。在这个过程中我们不能用软件延时,更不能用死循环等待等方式;

所以我们在串口接收中断函数中,只是把数据放置于一个缓冲队列中。

至于组成帧,以及检查帧的工作我们在主循环中解决,并且每次循环中我们只处理一个数据,每个字节数据的处理间隔的弹性比较大,因为我们已经缓存在了队列里面。

/*==========================================

功能:串口发送接收的时间事件

说明:放在大循环中每10ms一次

输出:none

输入:none

==========================================*/

void UARTimeEvent(void)

{

if (TxTimer != 0)//发送需要等待的时间递减

--TxTimer;

if (++RxTimer > RX__RESET) //

RxCnt = 0; //如果接受超时(即不完整的帧或者接收一帧完成),把接收的不完整帧覆盖

}

/*==========================================

功能:串口接收中断

说明:接收一个数据,存入缓存

输出:none

输入:none

=============


浅谈单片机应用程序架构 对于单片机程序来说,大家都不陌生,但是真正使用架构,考虑架构的恐怕并不多,随着程序开发的不断增多,本人觉得架构是非常必要的。前不就发帖与大家一起讨论了一下《谈谈怎样架构你的单片机程序》,发现真正使用架构的并不都,而且这类书籍基本没有。 本人经过摸索实验,并总结,大致应用程序的架构有三种: 1. 简单的前后台顺序执行程序,这类写法是大多数人使用的方法,不需用思考程序的具体架构,直接通过执行顺序编写应用程序即可。 2. 时间片轮询法,此方法是介于顺序执行与操作系统之间的一种方法。 3. 操作系统,此法应该是应用程序编写的最高境界。 下面就分别谈谈这三种方法的利弊和适应范围等。。。。。。。。。。。。。 1. 顺序执行法: 这种方法,这应用程序比较简单,实时性,并行性要求不太高的情况下是不错的方法,程序设计简单,思路比较清晰。但是当应用程序比较复杂的时候,如果没有一个完整的流程图,恐怕别人很难看懂程序的运行状态,而且随着程序功能的增加,编写应用程序的工程师的大脑也开始混乱。即不利于升级维护,也不利于代码优化。本人写个几个比较复杂一点的应用程序,刚开始就是使用此法,最终虽然能够实现功能,但是自己的思维一直处于混乱状态。导致程序一直不能让自己满意。 这种方法大多数人都会采用,而且我们接受的教育也基本都是使用此法。对于我们这些基本没有学习过数据结构,程序架构的单片机工程师来说,无疑很难在应用程序的设计上有一个很大的提高,也导致了不同工程师编写的应用程序很难相互利于和学习。 本人建议,如果喜欢使用此法的网友,如果编写比较复杂的应用程序,一定要先理清头脑,设计好完整的流程图再编写程序,否则后果很严重。当然应该程序本身很简单,此法还是一个非常必须的选择。 下面就写一个顺序执行的程序模型,方面和下面两种方法对比: 复制内容到剪贴板 代码: /************************************************************************************** * FunctionName : main() * Description : 主函数 * EntryParameter : None * ReturnValue : None **************************************************************************************/ int main(void) { uint8 keyValue; InitSys(); // 初始化 while (1) { TaskDisplayClock(); keyValue = http://www.mamicode.com/TaskKeySan();>

 

 

架构一、


void main(void)
{
    Init(void);

    while(1)
    {
        Task1(void);
        ......
        Taskn(void);
   }
}
架构二、

void main(void)
{
    Init(void);

    while(1)
    {

        if (sys._5ms > 0)
        {
               sys._5ms = 0;
               task_index++;
               if (task_index > n)
               {
                      task_index = 0;
               }
        }

        switch(task_index)
        {
             case 0:  
                       Task1();
                        break;
            case 1:
                     ...
                    break;
            case n:
                    Taskn();
                    break;
            default:
                    break;
        }
   }
}
该种结构函数运行时间间隔的灵活性不是很大,但是函数本身比较自由,形参可有可无,不需要多余的外函数,免去了不必要的进出栈,定时器中断 里面处理也很简单,只需将sys._5ms置位;
今天突然想做一个时间间隔控制比较灵活的,这就要用到函数指针,函数的格式就固定了,或者另外给函数打包,而且要逐次查询,就类似操作系统那样的了,这就实有些浪费了,想想还是放弃了。
ISR_Time()
{
    if (5ms > 0)
    {
        5ms = 0;
        TASK1 = 1;
    }
    if (nms > 0)
    {
        TASKn = 1;
    }
}

void main(void)
{
    Init(void);

    while(1)
    {
        if (TASK1)
        {
             TASK1 = 0;
            Task1(void);
        }
        ....

       if (TASKn)
        {
            TASKn = 0;
            Taskn(void);
        }
    }
}