首页 > 代码库 > 【Android】Handler、Looper源码分析

【Android】Handler、Looper源码分析

一、前言

  源码分析使用的版本是 4.4.2_r1。

  Handler和Looper的入门知识以及讲解可以参考我的另外一篇博客:Android Handler机制

  简单而言:Handler和Looper是对某一个线程实现消息机制的重要组成部分,另外两个重要元素是Message和MessageQueue,通过这四个类,可以让某个线程具备接收、处理消息的能力。

 

二、源码剖析

  虽然只有四个类,而且这里只是剖析其中两个,但是也不能独立分析,必须组合进行解析。切入点是类Looper的注释中的一段示例代码:

 1 class LooperThread extends Thread {
 2      public Handler mHandler;
 3 
 4      public void run() {
 5           Looper.prepare();
 6 
 7           mHandler = new Handler() {
 8              public void handleMessage(Message msg) {
 9                  // process incoming messages here
10               }
11          };
12          Looper.loop();
13      }
14 }

  这段代码描述了如何将一个普通的线程转变为一个Looper线程,即让它具备消息的循环处理能力。我们从Looper入手,看看这里到底做了什么。

代码一:

 1 /** Initialize the current thread as a looper.
 2       * This gives you a chance to create handlers that then reference
 3       * this looper, before actually starting the loop. Be sure to call
 4       * {@link #loop()} after calling this method, and end it by calling
 5       * {@link #quit()}.
 6       */
 7     public static void prepare() {
 8         prepare(true);
 9     }
10 
11     private static void prepare(boolean quitAllowed) {
12         if (sThreadLocal.get() != null) {
13             throw new RuntimeException("Only one Looper may be created per thread");
14         }
15         sThreadLocal.set(new Looper(quitAllowed));
16     }

  这里展示的是Looper的静态方法,即prepare(),前面代码中第5行调用。

  第13行可以看到一个运行时异常,其打印信息翻译为:每一个线程只允许拥有一个Looper,而且判断条件中用到ThreadLocal对象,如果不明白这是什么,可以参考我的另外一篇博客:深入理解ThreadLocal。总之,第一次调换用这个方法并且之前没有调用过,则会调用第15行的代码,这里实例化了一个Looper对象,其构造方法如下:

代码二:

1 private Looper(boolean quitAllowed) {
2      mQueue = new MessageQueue(quitAllowed);
3      mThread = Thread.currentThread();
4 }

  第2行初始化了一个MessageQueue,顾名思义,就是为Looper创建绑定了一个消息队列。

  第3行则获取当前线程,即调用Looper的线程。这样即可将Looper绑定到一个线程上,同时为一个线程创建一个消息队列。

  在消息机制里面,Looper只是负责管理消息队列,也就是取出消息进行处理,而Handler则是负责发送消息以及处理消息的,那么Handler和Looper又是如何绑定到一起的呢?看切入点里面的7-11行,这里做了什么呢?下面的分析涉及到Looper中的几个方法,这里插入分析一下:

代码三:

 1 /**
 2      * Return the Looper object associated with the current thread.  Returns
 3      * null if the calling thread is not associated with a Looper.
 4      */
 5     public static Looper myLooper() {
 6         return sThreadLocal.get();
 7     }
 8 
 9     /** Returns the application‘s main looper, which lives in the main thread of the application.
10      */
11     public static Looper getMainLooper() {
12         synchronized (Looper.class) {
13             return sMainLooper;
14         }
15     }

  很明显可以看到myLooper是获取属于当前线程的Looper,而getMainLooper则是获取应用的主Looper,它由属性sMainLooper引用,其赋值过程如下。

代码四:

 1     /**
 2      * Initialize the current thread as a looper, marking it as an
 3      * application‘s main looper. The main looper for your application
 4      * is created by the Android environment, so you should never need
 5      * to call this function yourself.  See also: {@link #prepare()}
 6      */
 7     public static void prepareMainLooper() {
 8         prepare(false);
 9         synchronized (Looper.class) {
10             if (sMainLooper != null) {
11                 throw new IllegalStateException("The main Looper has already been prepared.");
12             }
13             sMainLooper = myLooper();
14         }
15     }

  注释中说到,这个方法不应该由程序员自己调用,我猜测这个方法应该是在应用启动的时候,由属于应用的第一个线程调用,之后如果再次调用,就会抛出异常了,因为sMainLooper实际上是一个static变量,也就是说它是属于整个应用的。

  准备完毕,现在回到主题,

代码五:

 1     /**
 2      * Default constructor associates this handler with the {@link Looper} for the
 3      * current thread.
 4      *
 5      * If this thread does not have a looper, this handler won‘t be able to receive messages
 6      * so an exception is thrown.
 7      */
 8     public Handler() {
 9         this(null, false);
10     }
11     /**
12      * Use the {@link Looper} for the current thread with the specified callback interface
13      * and set whether the handler should be asynchronous.
14      *
15      * Handlers are synchronous by default unless this constructor is used to make
16      * one that is strictly asynchronous.
17      *
18      * Asynchronous messages represent interrupts or events that do not require global ordering
19      * with represent to synchronous messages.  Asynchronous messages are not subject to
20      * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
21      *
22      * @param callback The callback interface in which to handle messages, or null.
23      * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
24      * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
25      *
26      * @hide
27      */
28     public Handler(Callback callback, boolean async) {
29         if (FIND_POTENTIAL_LEAKS) {
30             final Class<? extends Handler> klass = getClass();
31             if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
32                     (klass.getModifiers() & Modifier.STATIC) == 0) {
33                 Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
34                     klass.getCanonicalName());
35             }
36         }
37 
38         mLooper = Looper.myLooper();
39         if (mLooper == null) {
40             throw new RuntimeException(
41                 "Can‘t create handler inside thread that has not called Looper.prepare()");
42         }
43         mQueue = mLooper.mQueue;
44         mCallback = callback;
45         mAsynchronous = async;
46     }

  重点在于39-43行。第38行调用myLooper()方法获取属于本线程的Looper,如果你在这之前没有调用Looper.prepare()方法,则会返回null,此时就会抛出异常,要求你在这之前调用Looper.prepare()方法。而平时我们在主线程中使用Handler的时候,并不需要调用Looper.prepare()方法,这是因为主线程默认绑定一个Looper。

  接下去43行则是获取Looper的消息队列。

  除了这种简单的创建方式之外,Handler也还有别的创建方式,比如:

代码六:

 1     /**
 2      * Use the provided {@link Looper} instead of the default one and take a callback
 3      * interface in which to handle messages.  Also set whether the handler
 4      * should be asynchronous.
 5      *
 6      * Handlers are synchronous by default unless this constructor is used to make
 7      * one that is strictly asynchronous.
 8      *
 9      * Asynchronous messages represent interrupts or events that do not require global ordering
10      * with represent to synchronous messages.  Asynchronous messages are not subject to
11      * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
12      *
13      * @param looper The looper, must not be null.
14      * @param callback The callback interface in which to handle messages, or null.
15      * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
16      * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
17      *
18      * @hide
19      */
20     public Handler(Looper looper, Callback callback, boolean async) {
21         mLooper = looper;
22         mQueue = looper.mQueue;
23         mCallback = callback;
24         mAsynchronous = async;
25     }

  这里传入了一个Looper,而mLooper的赋值不是获取当前线程的Looper,而是直接取用该looper,这引起一个怀疑:一个Looper(或者说一个线程,因为是线程和Looper是一一对应的关系)可以绑定不止一个Handler,因为很明显我可以用一个Looper通过上述构造方法传入到不同的Handler中去,那么自然而然又想到一个问题:Handler是用于发送和处理消息的,那么当一个Looper绑定多个Handler的时候,发送来的消息肯定都是存储在Looper的消息队列中的,那么处理消息的时候,是怎么处理的呢?每一个Handler都处理一遍么?继续看源码,首先看发送消息的函数:

代码七:

 1     public final boolean sendMessage(Message msg)
 2     {
 3         return sendMessageDelayed(msg, 0);
 4     }
 5 
 6     public final boolean sendEmptyMessage(int what)
 7     {
 8         return sendEmptyMessageDelayed(what, 0);
 9     }
10 
11     public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
12         Message msg = Message.obtain();
13         msg.what = what;
14         return sendMessageDelayed(msg, delayMillis);
15     }
16 
17     public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
18         Message msg = Message.obtain();
19         msg.what = what;
20         return sendMessageAtTime(msg, uptimeMillis);
21     }
22 
23     public final boolean sendMessageDelayed(Message msg, long delayMillis)
24     {
25         if (delayMillis < 0) {
26             delayMillis = 0;
27         }
28         return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
29     }
30 
31     /**
32      * Enqueue a message into the message queue after all pending messages
33      * before the absolute time (in milliseconds) <var>uptimeMillis</var>.
34      * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
35      * You will receive it in {@link #handleMessage}, in the thread attached
36      * to this handler.
37      * 
38      * @param uptimeMillis The absolute time at which the message should be
39      *         delivered, using the
40      *         {@link android.os.SystemClock#uptimeMillis} time-base.
41      *         
42      * @return Returns true if the message was successfully placed in to the 
43      *         message queue.  Returns false on failure, usually because the
44      *         looper processing the message queue is exiting.  Note that a
45      *         result of true does not mean the message will be processed -- if
46      *         the looper is quit before the delivery time of the message
47      *         occurs then the message will be dropped.
48      */
49     public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
50         MessageQueue queue = mQueue;
51         if (queue == null) {
52             RuntimeException e = new RuntimeException(
53                     this + " sendMessageAtTime() called with no mQueue");
54             Log.w("Looper", e.getMessage(), e);
55             return false;
56         }
57         return enqueueMessage(queue, msg, uptimeMillis);
58     }

  为了清晰,前面的方法全部都去掉了注释,只剩下最后一个方法,我们看到,往消息队列中添加消息,最后调用的是方法enqueueMessage。其实现如下:

代码八:

1     private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
2         msg.target = this;
3         if (mAsynchronous) {
4             msg.setAsynchronous(true);
5         }
6         return queue.enqueueMessage(msg, uptimeMillis);
7     }

  方法的最后调用了MessageQueue的enqueueMessage方法,从上面的流程可以看到,queue其实就是从mLooper中取出的MessgaeQueue。最终到了这里,消息可以通过Handler顺利压入绑定的Looper中的MessageQueue中去了。接下去就是消息的处理。这里需回到Looper中去,因为循环取出消息进行处理是Looper的工作。

  前面切入点代码中可以看到,在调用Looper.prepare()方法,实例化Handler之后,还有一个方法需要调用,即Looper.loop()方法。

代码九:

 1  /**
 2      * Run the message queue in this thread. Be sure to call
 3      * {@link #quit()} to end the loop.
 4      */
 5     public static void loop() {
 6         final Looper me = myLooper();
 7         if (me == null) {
 8             throw new RuntimeException("No Looper; Looper.prepare() wasn‘t called on this thread.");
 9         }
10         final MessageQueue queue = me.mQueue;
11 
12         // Make sure the identity of this thread is that of the local process,
13         // and keep track of what that identity token actually is.
14         Binder.clearCallingIdentity();
15         final long ident = Binder.clearCallingIdentity();
16 
17         for (;;) {
18             Message msg = queue.next(); // might block
19             if (msg == null) {
20                 // No message indicates that the message queue is quitting.
21                 return;
22             }
23 
24             // This must be in a local variable, in case a UI event sets the logger
25             Printer logging = me.mLogging;
26             if (logging != null) {
27                 logging.println(">>>>> Dispatching to " + msg.target + " " +
28                         msg.callback + ": " + msg.what);
29             }
30 
31             msg.target.dispatchMessage(msg);
32 
33             if (logging != null) {
34                 logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
35             }
36 
37             // Make sure that during the course of dispatching the
38             // identity of the thread wasn‘t corrupted.
39             final long newIdent = Binder.clearCallingIdentity();
40             if (ident != newIdent) {
41                 Log.wtf(TAG, "Thread identity changed from 0x"
42                         + Long.toHexString(ident) + " to 0x"
43                         + Long.toHexString(newIdent) + " while dispatching to "
44                         + msg.target.getClass().getName() + " "
45                         + msg.callback + " what=" + msg.what);
46             }
47 
48             msg.recycle();
49         }
50     }

  前面6-16行就不多解释了,关键看17行,这里是一个死循环,无限循环表示从队列中获取消息;第18行也很关键,这里调用MessageQueue的next方法获取下一个消息,很重要的地方在于注释:might block。可能会阻塞!如果不注意这一点,很可能就会误认为调用该方法,因为当时队列中还没有消息,所以就会执行第21行,直接返回了,而看到这个注释,再加上第20-22行的代码,我们容易猜测,MessageQueue通过在next()方法中返回null来表示整个队列的取消,从而终结消息机制,OK,不多说,言归正传,这一段代码最重要的是看31行:msg.target.dispatchMessage(msg);这行代码预示着如何处理消息!

  每一个Message都有一个target属性,该属性的声明如下:

1    /*package*/ Handler target;  

  没错,是Handler类型!反观代码,在代码八的第2行,有一行很重要的代码被忽视了:

1 msg.target = this;

  在Handler发送没一个消息进入队列之前,都会将其target设置为自己。从这里就可以看到之前那个问题(红色部分)的答案,消息是交给发送它的Handler处理的!接下来自然要去看的是Handler的dispatchMessage方法:

 1 /**
 2      * Handle system messages here.
 3      */
 4     public void dispatchMessage(Message msg) {
 5         if (msg.callback != null) {
 6             handleCallback(msg);
 7         } else {
 8             if (mCallback != null) {
 9                 if (mCallback.handleMessage(msg)) {
10                     return;
11                 }
12             }
13             handleMessage(msg);
14         }
15     }

  注释即说明它是处理消息的,在这里可以进行一些回调,这里不说明。主要看第13行,调用了handleMessage()方法,其实现如下:

代码十一:

1 /**
2      * Subclasses must implement this to receive messages.
3      */
4     public void handleMessage(Message msg) {
5     }

  终于到这一步了!注释中就能看到,我们在实例化Handler的子类的时候,是需要重载这个方法的,否则你的消息不会得到处理,实现参见切入点8-11行!具体使用可以参见我的博客Android Handler机制。

 

三、总结

  源码剖析中,主要关注的对象是:Thread,Handler,Looper三个重量级对象是如何绑定到一起的,以及消息是如何在Handler和Looper中存在和传播的,从源码中看这个过程非常清楚。其实整个设计并没有什么新奇的技巧,但是设计非常合理,值得借鉴。

  下一篇博客会去探索一下MessageQueue,关于MessageQueue如何管理消息,和Looper一起实现延迟消息,我非常感兴趣。