首页 > 代码库 > 朴素贝叶斯分类器
朴素贝叶斯分类器
1.贝叶斯公式
- 条件概率
p(B|A)=p(AB)p(A)
则p(AB)=p(A)p(B|A) - 全概率公式
p(A)=p(B1)p(A|B1)+p(B2)p(A|B2)+...+p(Bn)p(A|Bn) - 贝叶斯公式
p(Bi|A)=p(ABi)p(A)=p(A|Bi)p(Bi)Σj=0np(A|Bj)p(Bj)
该公式给出了在事件A 下,事件Bi 发生的概率的计算方法。通常,将此公式成为后验概率公式,即在已知观察量A 后得出的参数B 的分布。其中p(Bi) 称为先验概率,是人们根据经验给出的参数Bi 的分布。
贝叶斯方法与最大似然法的区别就在于引入了先验概率,通过先验概率可以避免最大似然法所带来的过拟合问题。
2.朴素贝叶斯方法
- 对于
B={B1,B2...Bn} ,其条件概率可表示为然而在实际情况中,等式右边的公式很难计算出来。故我们做出一个较强的假设,即p(B|A)=p(B1|A)p(B2|A,B1)p(B3|A,B1,B2)...p(Bn|A,B1,...,Bn?1) Bi 是相互独立的,这样条件概率可以表示为这就是朴素贝叶斯方法。当然在实际情况中,这种相互独立的假设往往是不成立的,然而其还是可以在一定程度上给出对数据的描述。p(B|A)=p(B1|A)p(B2|A)...p(Bn|A) - 根据这个假设,我们可以分别计算
p(Bi|A)∝p(A|Bi)p(Bi) 若对?j≠i , 有p(Bi|A)>p(Bj|A) 则A 就可归为Bi 类
3.实例
在训练过程中,需要计算两个概率:
* 先验概率
* 条件概率
from numpy import * def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea','problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute','I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec=[0, 1, 0, 1, 0, 1] return postingList, classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def setOfWord2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 else: print "the word: %s is not in my vocabulary!" % word return returnVec def trainNB0(trainMatrix, trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords) p1Num = ones(numWords) p0Denom = 2.0; p1Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect =log(p1Num/p1Denom) p0Vect =log(p0Num/p0Denom) return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify*p1Vec) + log(pClass1) p0 = sum(vec2Classify*p0Vec) + log(1.0-pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWord2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWord2Vec(myVocabList, testEntry)) print testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb) testEntry=['stupid', 'garbage'] thisDoc = array(setOfWord2Vec(myVocabList, testEntry)) print testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb) def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]+=1 return returnVec def textParse(bigString): import re listOfTokens = re.split(r'\W*', bigString) return [tok.lower() for tok in listOfTokens if len(tok)>2] def spamTest(): docList = []; classList=[]; fullText=[] for i in range(1, 26): wordList = textParse(open('email/spam/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(open('email/ham/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) trainingSet = range(50); testSet = [] for i in range(10): randIndex = int(random.uniform(0, len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat=[]; trainClasses=[] for docIndex in trainingSet: trainMat.append(setOfWord2Vec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam=trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = setOfWord2Vec(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print 'the error rate is: ',float(errorCount)/len(testSet) def calcMostFreq(vocabList, fullText): import operator freqDict={} for token in vocabList: freqDict[token] = fullText.count(token) sortedFreq = sorted(freqDict.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedFreq[:30] def localWords(feed1, feed0): import feedparser docList=[]; classList=[]; fullText=[] minLen = min(len(feed1['entries']), len(feed0['entries'])) for i in range(minLen): wordList = textParse(feed1['entries'][i]['summary']) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(feed0['entries'][i]['summary']) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) top30Words = calcMostFreq(vocabList, fullText) for pairW in top30Words: if pairW[0] in vocabList: vocabList.remove(pairW[0]) trainingSet = range(2*minLen) testSet=[] for i in range(20): randIndex = int(random.uniform(0, len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat=[]; trainClasses=[] for docIndex in trainingSet: trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = bagOfWords2VecMN(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print 'the error rate is: ', float(errorCount)/len(testSet) return vocabList, p0V, p1V if __name__=="__main__": listOPosts, listClasses = loadDataSet() print listOPosts, listClasses myVocabList = createVocabList(listOPosts) print myVocabList print setOfWord2Vec(myVocabList, listOPosts[0]) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWord2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(trainMat, listClasses) print p0V print testingNB() spamTest() import feedparser ny = feedparser.parse('http://newyork.craigslist.org/stp/index.rss') sf = feedparser.parse('http://sfbay.craigslist.org/stp/index.rss') vocabList,pSF,pNY=localWords(ny,sf)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。