首页 > 代码库 > Netty源码学习——EventLoopGroup原理:NioEventLoopGroup分析
Netty源码学习——EventLoopGroup原理:NioEventLoopGroup分析
类结构图:
不了解Executor接口原理的可以查看concurrent包中的api介绍,这里只介绍Netty中EventExecutorGroup的主要功能!
从类的结构图中可以看到EventExecutorGroup是直接继承ScheduledExecutorService这个接口的,为了说明白Group的原理这里顺便提一下ScheduledExecutorService的用途!
java.util.concurrent.ScheduledExecutorService An ExecutorService that can schedule commands to run after a given delay, or to execute periodically. The schedule methods create tasks with various delays and return a task object that can be used to cancel or check execution. The scheduleAtFixedRate and scheduleWithFixedDelay methods create and execute tasks that run periodically until cancelled. Commands submitted using the Executor.execute and ExecutorService submit methods are scheduled with a requested delay of zero. Zero and negative delays (but not periods) are also allowed in schedule methods, and are treated as requests for immediate execution. All schedule methods accept relative delays and periods as arguments, not absolute times or dates. It is a simple matter to transform an absolute time represented as a java.util.Date to the required form. For example, to schedule at a certain future date, you can use: schedule(task, date.getTime() - System.currentTimeMillis(), TimeUnit.MILLISECONDS). Beware however that expiration of a relative delay need not coincide with the current Date at which the task is enabled due to network time synchronization protocols, clock drift, or other factors. The Executors class provides convenient factory methods for the ScheduledExecutorService implementations provided in this package. Usage Example Here is a class with a method that sets up a ScheduledExecutorService to beep every ten seconds for an hour: import static java.util.concurrent.TimeUnit.*; class BeeperControl { private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1); public void beepForAnHour() { final Runnable beeper = new Runnable() { public void run() { System.out.println("beep"); } }; final ScheduledFuture beeperHandle = scheduler.scheduleAtFixedRate(beeper, 10, 10, SECONDS); scheduler.schedule(new Runnable() { public void run() { beeperHandle.cancel(true); } }, 60 * 60, SECONDS); } }} Since: 1.5 Author: Doug Lea
主要就是可以在一段延迟之后或者每隔一段时间执行task的ExecutorService定义。
EventLoopGroup:
Special EventExecutorGroup
which allows to register Channel
‘s that get processed for later selection during theevent loop.
EventLoop:
Will handle all the I/O-Operations for a Channel
once it was registered. OneEventLoop
instance will usually handle more then oneChannel but this may depend on implementation details and internals.
ThreadPerChannelEventLoop(SingleThreadEventLoop
which is used to handle OIOChannel
‘s. So in general there will be oneThreadPerChannelEventLoop
per Channel
.)是用来实现BIO的一对一模型的.
NioEventLoop(SingleThreadEventLoop
implementation which register theChannel
‘s to aSelector
and so does the multi-plexing of these in the event loop.)是用来实现NIO多路复用的,接下来通过源码来分析!
构造函数(请注意parent参数,这是一个LoopGroup类型的):
NioEventLoop(NioEventLoopGroup parent, ThreadFactory threadFactory, SelectorProvider selectorProvider) { super(parent, threadFactory, false); if (selectorProvider == null) { throw new NullPointerException("selectorProvider"); } provider = selectorProvider; selector = openSelector(); }持有的Selector:
private Selector openSelector() { final Selector selector; try { selector = provider.openSelector(); } catch (IOException e) { throw new ChannelException("failed to open a new selector", e); } if (DISABLE_KEYSET_OPTIMIZATION) { return selector; } try { SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet(); Class<?> selectorImplClass = Class.forName("sun.nio.ch.SelectorImpl", false, ClassLoader.getSystemClassLoader()); selectorImplClass.isAssignableFrom(selector.getClass()); Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys"); Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys"); selectedKeysField.setAccessible(true); publicSelectedKeysField.setAccessible(true); selectedKeysField.set(selector, selectedKeySet); publicSelectedKeysField.set(selector, selectedKeySet); selectedKeys = selectedKeySet; logger.trace("Instrumented an optimized java.util.Set into: {}", selector); } catch (Throwable t) { selectedKeys = null; logger.trace("Failed to instrument an optimized java.util.Set into: {}", selector, t); } return selector; }Run方法实现:
@Override protected void run() { for (;;) { oldWakenUp = wakenUp.getAndSet(false); try { if (hasTasks()) { selectNow(); } else { select(); // 'wakenUp.compareAndSet(false, true)' is always evaluated // before calling 'selector.wakeup()' to reduce the wake-up // overhead. (Selector.wakeup() is an expensive operation.) // // However, there is a race condition in this approach. // The race condition is triggered when 'wakenUp' is set to // true too early. // // 'wakenUp' is set to true too early if: // 1) Selector is waken up between 'wakenUp.set(false)' and // 'selector.select(...)'. (BAD) // 2) Selector is waken up between 'selector.select(...)' and // 'if (wakenUp.get()) { ... }'. (OK) // // In the first case, 'wakenUp' is set to true and the // following 'selector.select(...)' will wake up immediately. // Until 'wakenUp' is set to false again in the next round, // 'wakenUp.compareAndSet(false, true)' will fail, and therefore // any attempt to wake up the Selector will fail, too, causing // the following 'selector.select(...)' call to block // unnecessarily. // // To fix this problem, we wake up the selector again if wakenUp // is true immediately after selector.select(...). // It is inefficient in that it wakes up the selector for both // the first case (BAD - wake-up required) and the second case // (OK - no wake-up required). if (wakenUp.get()) { selector.wakeup(); } } cancelledKeys = 0; final long ioStartTime = System.nanoTime(); needsToSelectAgain = false; if (selectedKeys != null) { processSelectedKeysOptimized(selectedKeys.flip()); } else { processSelectedKeysPlain(selector.selectedKeys()); } final long ioTime = System.nanoTime() - ioStartTime; final int ioRatio = this.ioRatio; runAllTasks(ioTime * (100 - ioRatio) / ioRatio); if (isShuttingDown()) { closeAll(); if (confirmShutdown()) { break; } } } catch (Throwable t) { logger.warn("Unexpected exception in the selector loop.", t); // Prevent possible consecutive immediate failures that lead to // excessive CPU consumption. try { Thread.sleep(1000); } catch (InterruptedException e) { // Ignore. } } } }
Select方法:
private void select() throws IOException { Selector selector = this.selector; try { int selectCnt = 0; long currentTimeNanos = System.nanoTime(); long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos); for (;;) { long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L; if (timeoutMillis <= 0) { if (selectCnt == 0) { selector.selectNow(); selectCnt = 1; } break; } int selectedKeys = selector.select(timeoutMillis); selectCnt ++; if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks()) { // Selected something, // waken up by user, or // the task queue has a pending task. break; } if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 && selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) { // The selector returned prematurely many times in a row. // Rebuild the selector to work around the problem. logger.warn( "Selector.select() returned prematurely {} times in a row; rebuilding selector.", selectCnt); rebuildSelector(); selector = this.selector; // Select again to populate selectedKeys. selector.selectNow(); selectCnt = 1; break; } currentTimeNanos = System.nanoTime(); } if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) { if (logger.isDebugEnabled()) { logger.debug("Selector.select() returned prematurely {} times in a row.", selectCnt - 1); } } } catch (CancelledKeyException e) { if (logger.isDebugEnabled()) { logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector - JDK bug?", e); } // Harmless exception - log anyway } } private void selectAgain() { needsToSelectAgain = false; try { selector.selectNow(); } catch (Throwable t) { logger.warn("Failed to update SelectionKeys.", t); } }processSelectedKeysPlain实现:
private void processSelectedKeysPlain(Set<SelectionKey> selectedKeys) { // check if the set is empty and if so just return to not create garbage by // creating a new Iterator every time even if there is nothing to process. // See https://github.com/netty/netty/issues/597 if (selectedKeys.isEmpty()) { return; } Iterator<SelectionKey> i = selectedKeys.iterator(); for (;;) { final SelectionKey k = i.next(); final Object a = k.attachment(); i.remove(); if (a instanceof AbstractNioChannel) { processSelectedKey(k, (AbstractNioChannel) a); } else { @SuppressWarnings("unchecked") NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a; processSelectedKey(k, task); } if (!i.hasNext()) { break; } if (needsToSelectAgain) { selectAgain(); selectedKeys = selector.selectedKeys(); // Create the iterator again to avoid ConcurrentModificationException if (selectedKeys.isEmpty()) { break; } else { i = selectedKeys.iterator(); } } } }
selectAgain实现:
private void selectAgain() { needsToSelectAgain = false; try { selector.selectNow(); } catch (Throwable t) { logger.warn("Failed to update SelectionKeys.", t); } }
这里调用selectNow来继续select!
是不是和io学习4——EchoServer在IO,NIO,NIO.2中的实现中NIO的实现很相似!因为EventLoop是Executor,所以他就是Reactor中的Dispatcher,请深刻理解Executor!
接下来让我们想想开始提到的Group的用途,在看到Group的时候我突然想到了Nio学习5——对NIO.2(AIO) Reactor模式封装的拆解中的AsynchronousChannelGroup。
NioEventLoop(NioEventLoopGroup parent, ThreadFactory threadFactory, SelectorProvider selectorProvider) { super(parent, threadFactory, false); if (selectorProvider == null) { throw new NullPointerException("selectorProvider"); } provider = selectorProvider; selector = openSelector(); }SingleThreadEventExecutor类:
/** * Create a new instance * * @param parent the {@link EventExecutorGroup} which is the parent of this instance and belongs to it * @param threadFactory the {@link ThreadFactory} which will be used for the used {@link Thread} * @param addTaskWakesUp {@code true} if and only if invocation of {@link #addTask(Runnable)} will wake up the * executor thread */ protected SingleThreadEventExecutor( EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) { if (threadFactory == null) { throw new NullPointerException("threadFactory"); } this.parent = parent; this.addTaskWakesUp = addTaskWakesUp; thread = threadFactory.newThread(new Runnable() { @Override public void run() { boolean success = false; updateLastExecutionTime(); try { SingleThreadEventExecutor.this.run(); success = true; } catch (Throwable t) { logger.warn("Unexpected exception from an event executor: ", t); } finally { if (state < ST_SHUTTING_DOWN) { state = ST_SHUTTING_DOWN; } // Check if confirmShutdown() was called at the end of the loop. if (success && gracefulShutdownStartTime == 0) { logger.error( "Buggy " + EventExecutor.class.getSimpleName() + " implementation; " + SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " + "before run() implementation terminates."); } try { // Run all remaining tasks and shutdown hooks. for (;;) { if (confirmShutdown()) { break; } } } finally { try { cleanup(); } finally { synchronized (stateLock) { state = ST_TERMINATED; } threadLock.release(); if (!taskQueue.isEmpty()) { logger.warn( "An event executor terminated with " + "non-empty task queue (" + taskQueue.size() + ')'); } terminationFuture.setSuccess(null); } } } } }); taskQueue = newTaskQueue(); }
追踪一下这个构造函数的调用过程:
最后找到了,NioEventLoopGroup,构造这个group的时候传递了一个ThreadFactory参数,所以这个group和Nio学习5——对NIO.2(AIO) Reactor模式封装的拆解中的AsynchronousChannelGroup也是大同小异的!