首页 > 代码库 > index seek和index scan 提高sql 效率
index seek和index scan 提高sql 效率
index seek和index scan 提高sql 效率
解释解释index seek和index scan:
索引是一颗B树,
index seek是查找从B树的根节点开始,一级一级找到目标行。
index scan则是从左到右,把整个B树遍历一遍。
假设唯一的目标行位于索引树最右的叶节点上(假设是非聚集索引,树深度2,叶节点占用k页物理存储)。
index seek引起的IO是4,而index scan引起的IO是K,性能差别巨大。
关于索引,可以仔细读读联机文档关于物理数据库体系结构部分
查询条件中不要包含运算
这些运算包括字符串连接(如:select * from Users where UserName + ‘pig’ = ‘张三pig’),通配符在前面的Like运算(如:select * from tb1 where col4 like ‘%aa’),使用其他用户自定义函数、系统内置函数、标量函数等等(如:select * from UserLog where datepart(dd, LogTime) = 3)。
SQLServer在处理以上语句时,一样没办法估算开销。最终结果当然是clustered index scan或者table scan了。
查询条件中不要包含同一张表内不同列之间的运算
所谓的“运算”包括加减乘除或通过一些function(如:select * from tb where col1 – col2 = 1997),也包括比较运算(如:select * from tb where col1 > col2)。这种情况下,SQLServer一样没办法估算开销。不论col1、col2上都有索引还是创建了col1、col2上的覆盖索引还是创建了col1 include col2的索引。
但是这种查询有解决办法,可以在表上多创建一个计算字段,其值设置为你的“运算”结果,再在该字段上创建一个索引,就Ok了。
(结果集/总行数)被称为选择性,比值越大,选择性就越高。
你得到了它,本文的重点就是选择性。
统计信息,说白了,就是表中某个字段取某个值时有多少行结果集。统计信息可以说是一种选择性的度量,SQLServer就是根据它来估算不同查询计划的优劣。
若表中总行数为1w,采样行数为1w。provider_no值为21的只有1行,而值为500的行则有4824行。
我们知道,SQLServer会缓存查询计划,假如有这么一个存储过程:
create proc myproc
(
@pno int
)
as
select * from charge where provider_no = @pno
第一次我们传进来一个21,OK,它会缓存该存储过程的执行计划为nonclustered index seek那个。后来我们又传进来一个500,完蛋了,服务器发现它有一个myproc的缓存,so,又通过nonclustered index seek执行,接着你的同伙看到你的查询花费了巨量的IO,于是,你被鄙视了。
这说明了啥?说明如果你的查询选择性变动剧烈,你应该告诉SQLServer不要缓存查询计划,每次都应该重新评估、编译。实现方法很简单,查询的尾巴上加一个option(recompile)好了。而且SQL2k5还有一个nb的feature,可以每次只重新编译存储过程的一部分(当然,你也可以选择重新编译整个存储过程,这取决于你的需求。详见联机文档。)
index seek和index scan 提高sql 效率