首页 > 代码库 > weka控制台指令
weka控制台指令
java weka.classifiers.trees.J48 -t data/weather.arff
java 类的完整名称 -t表示下一个参数是训练数据集的名称
java weka.classifiers.trees.J48 -h
查看java命令行中各个参数的具体含义
-h or -help Output help information.-synopsis or -info Output synopsis for classifier (use in conjunction with -h)-t <name of training file> Sets training file.-T <name of test file> Sets test file. If missing, a cross-validation will be performed on the training data.-c <class index> Sets index of class attribute (default: last).-x <number of folds> Sets number of folds for cross-validation (default: 10).-no-cv Do not perform any cross validation.-force-batch-training Always train classifier in batch mode, never incrementally.-split-percentage <percentage> Sets the percentage for the train/test set split, e.g., 66.-preserve-order Preserves the order in the percentage split.-s <random number seed> Sets random number seed for cross-validation or percentage split (default: 1).-m <name of file with cost matrix> Sets file with cost matrix.-disable <comma-separated list of evaluation metric names> Comma separated list of metric names not to print to the output. Available metrics: Correct,Incorrect,Kappa,Total cost,Average cost,KB relative,KB information, Correlation,Complexity 0,Complexity scheme,Complexity improvement, MAE,RMSE,RAE,RRSE,Coverage,Region size,TP rate,FP rate,Precision,Recall, F-measure,MCC,ROC area,PRC area-l <name of input file> Sets model input file. In case the filename ends with ‘.xml‘, a PMML file is loaded or, if that fails, options are loaded from the XML file.-d <name of output file> Sets model output file. In case the filename ends with ‘.xml‘, only the options are saved to the XML file, not the model.-v Outputs no statistics for training data.-o Outputs statistics only, not the classifier.-i Outputs detailed information-retrieval statistics for each class.-k Outputs information-theoretic statistics.-classifications "weka.classifiers.evaluation.output.prediction.AbstractOutput + options" Uses the specified class for generating the classification output. E.g.: weka.classifiers.evaluation.output.prediction.PlainText-p range Outputs predictions for test instances (or the train instances if no test instances provided and -no-cv is used), along with the attributes in the specified range (and nothing else). Use ‘-p 0‘ if no attributes are desired. Deprecated: use "-classifications ..." instead.-distribution Outputs the distribution instead of only the prediction in conjunction with the ‘-p‘ option (only nominal classes). Deprecated: use "-classifications ..." instead.-r Only outputs cumulative margin distribution.-z <class name> Only outputs the source representation of the classifier, giving it the supplied name.-g Only outputs the graph representation of the classifier.-xml filename | xml-string Retrieves the options from the XML-data instead of the command line.-threshold-file <file> The file to save the threshold data to. The format is determined by the extensions, e.g., ‘.arff‘ for ARFF format or ‘.csv‘ for CSV.-threshold-label <label> The class label to determine the threshold data for (default is the first label)Options specific to weka.classifiers.trees.J48:-U Use unpruned tree.-O Do not collapse tree.-C <pruning confidence> Set confidence threshold for pruning. (default 0.25)-M <minimum number of instances> Set minimum number of instances per leaf. (default 2)-R Use reduced error pruning.-N <number of folds> Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)-B Use binary splits only.-S Don‘t perform subtree raising.-L Do not clean up after the tree has been built.-A Laplace smoothing for predicted probabilities.-J Do not use MDL correction for info gain on numeric attributes.-Q <seed> Seed for random data shuffling (default 1).
weka.core
weka核心包,基本所有类都与他有联系
核心包中的关键类:Attribute:包含attribute’s name, its type, and, in the case of a nominal or string attribute, its possible values
Instance:contains the attribute values of a particular instance
Instances:holds an ordered set of instances—in other words, a dataset
weka.classifiers
内容:contains implementations of most of the algorithms for clas-sification and numeric prediction
关键抽象类:Classifier---->>defines the general structure of any scheme for classification or numeric prediction
包含三个核心方法:buildClassifier(), classifyInstance(),distributionForInstance()
继承这个抽象类的例子:
- weka.classifiers.trees.DecisionStump
- 覆写了distributionForInstance()
- 包含getRevision(),simply returns the revision number of the classifier,used by Weka maintainers when diagnosing and debugging problems reported by users.
- 包含globalInfo(),returns a string describing the classifier, which, along with the scheme’s options
- 包含toString(), returns a textual representation of the classifier
- 包含toSource(),s used to obtain a source code repre-sentation of the learned classifier
- 包含main(),called when you ask for a decision stump from the command line,相当于执行这个类的入口
- 包含getCapabilities() ,called by the generic object editor to provide information about the capabilities of a learning scheme
其他的一些比较重要的包
weka.associations
:contains association-rule learners
weka.clusterers
:contains methods for unsupervised learning.包含非监督学习方法
weka.datagenerators
:产生人工数据
weka.estimators package
:computes different types of probability distribution
weka.filters
:提供数据清理的相关方法
weka控制台指令