首页 > 代码库 > 基于Android、iOS平台的移动端车牌识别技术及实现车牌识别过程
基于Android、iOS平台的移动端车牌识别技术及实现车牌识别过程
近年来,随着移动行业的爆发式发展,手机配置不断提高,基于手机平台的信息采集、图像处理、数据传输等方面的研究也成为了热点,这使得基于手机平台上的车牌识别成为可能。传统的车牌识别系统一般都基于固定的桌面平台、图像采集不灵活,特别是对于交通管理部门来说,对违章车辆车牌的自动登记非常不便,因此基于Android、iOS平台的移动端车牌识别技术出现了。
那么如何实现车牌识别的呢,下面简单说说:
首先对现存的车牌识别算法进行了研究,在诸多算法中寻找到一种适合在Android、iOS平台上运行的算法。先通过智能手机的摄像头获得车牌的彩色图像,然后将采集到的图像进处理,包括通过YUV模型进行灰度化,分段线性变换进行灰度拉升,二值化,Roberts算子进行边缘检测,数学形态学处理等,然后通过Hough变换进行车牌矫正,其次用双投影和灰度跳变的方法实现车牌的定位、分割,最后通过模板匹配实现车牌识别。
移动端车牌识别实现的过程简单为以下几个部分:
图像采集:通过智能手机摄像头拍摄车牌图像。
预处理:灰度化、二值化、边缘增强、噪声过滤、自动白平衡、自动曝光以及伽马校正、对比度调整等。
车牌定位:在经过图像预处理之后的灰度图像上进行行列扫描,确定车牌区域,车牌切斜校正。
字符分割:在图像中定位出车牌区域后,通过灰度化、二值化等处理,精确定位字符区域,然后根据字符尺寸特征进行字符分割。
字符识别:对分割后的字符进行缩放、特征提取,与字符数据库模板中的标准字符表达形式进行匹配判别。
结果输出:将车牌识别的结果以文本格式输出。
基于Android、iOS平台的移动端车牌识别技术及实现车牌识别过程