首页 > 代码库 > 程序运行时三种内存分配策略

程序运行时三种内存分配策略

按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。 静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放.

2.2 堆和栈的比较 上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈: 从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的: 在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快, 当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时. 堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间,因此,用堆保存数据时会得到更大的灵活性。事实上,面向对象的多态性,堆内存分配是必不可少的,因为多态变量所需的存储空间只有在运行时创建了对象之后才能确定.在C++中,要求创建一个对象时,只需用 new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存.当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!这也正是导致我们刚才所说的效率低的原因,看来列宁同志说的好,人的优点往往也是人的缺点,人的缺点往往也是人的优点(晕~). 2.3 JVM中的堆和栈  JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的。堆栈以帧为单位保存线程的状态。JVM对堆栈只进行两种操作:以帧为单位的压栈和出栈操作。 我们知道,某个线程正在执行的方法称为此线程的当前方法.我们可能不知道,当前方法使用的帧称为当前帧。当线程激活一个Java方法,JVM就会在线程的 Java堆栈里新压入一个帧。这个帧自然成为了当前帧.在此方法执行期间,这个帧将用来保存参数,局部变量,中间计算过程和其他数据.这个帧在这里和编译原理中的活动纪录的概念是差不多的. 从Java的这种分配机制来看,堆栈又可以这样理解:堆栈(Stack)是操作系统在建立某个进程时或者线程(在支持多线程的操作系统中是线程)为这个线程建立的存储区域,该区域具有先进后出的特性。 每一个Java应用都唯一对应一个JVM实例,每一个实例唯一对应一个堆。应用程序在运行中所创建的所有类实例或数组都放在这个堆中,并由应用所有的线程共享.跟C/C++不同,Java中分配堆内存是自动初始化的。Java中所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配,也就是说在建立一个对象时从两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。

2.4 GC的思考 Java为什么慢?JVM的存在当然是一个原因,但有人说,在Java中,除了简单类型(int,char等)的数据结构,其它都是在堆中分配内存(所以说Java的一切都是对象),这也是程序慢的原因之一。 我的想法是(应该说代表TIJ的观点),如果没有Garbage Collector(GC),上面的说法就是成立的.堆不象栈是连续的空间,没有办法指望堆本身的内存分配能够象堆栈一样拥有传送带般的速度,因为,谁会为你整理庞大的堆空间,让你几乎没有延迟的从堆中获取新的空间呢? 这个时候,GC站出来解决问题.我们都知道GC用来清除内存垃圾,为堆腾出空间供程序使用,但GC同时也担负了另外一个重要的任务,就是要让Java中堆的内存分配和其他语言中堆栈的内存分配一样快,因为速度的问题几乎是众口一词的对Java的诟病.要达到这样的目的,就必须使堆的分配也能够做到象传送带一样,不用自己操心去找空闲空间.这样,GC除了负责清除Garbage外,还要负责整理堆中的对象,把它们转移到一个远离Garbage的纯净空间中无间隔的排列起来,就象堆栈中一样紧凑,这样Heap Pointer就可以方便的指向传送带的起始位置,或者说一个未使用的空间,为下一个需要分配内存的对象"指引方向".因此可以这样说,垃圾收集影响了对象的创建速度,听起来很怪,对不对? 那GC怎样在堆中找到所有存活的对象呢?前面说了,在建立一个对象时,在堆中分配实际建立这个对象的内存,而在堆栈中分配一个指向这个堆对象的指针(引用),那么只要在堆栈(也有可能在静态存储区)找到这个引用,就可以跟踪到所有存活的对象.找到之后,GC将它们从一个堆的块中移到另外一个堆的块中,并将它们一个挨一个的排列起来,就象我们上面说的那样,模拟出了一个栈的结构,但又不是先进后出的分配,而是可以任意分配的,在速度可以保证的情况下, Isn‘t it great? 但是,列宁同志说了,人的优点往往也是人的缺点,人的缺点往往也是人的优点(再晕~~).GC()的运行要占用一个线程,这本身就是一个降低程序运行性能的缺陷,更何况这个线程还要在堆中把内存翻来覆去的折腾.不仅如此,如上面所说,堆中存活的对象被搬移了位置,那么所有对这些对象的引用都要重新赋值.这些开销都会导致性能的降低. 此消彼长,GC()的优点带来的效益是否盖过了它的缺点导致的损失,我也没有太多的体会,Bruce Eckel 是Java的支持者,王婆卖瓜,话不能全信.个人总的感觉是,Java还是很慢,它的发展还需要时间.

上面的体会是我看了TIJ.3rdEdition.Revision4.0中第四章之后得出的,内容和前面的有些不同.我没有看过侯捷的中文版本,但我觉得,在关键问题上,原版的TIJ的确更值得一读.所以和中文版配合起来学习是比较不错的选择. 我只能算一个Java的初学者,没想到起了这么个题目,却受到这么多人的关注,欣喜之余,也决心尽力写好下面的每一篇.不过这一篇完了,我就该准备赴美签证了,如果成功,那就要等到8月27号CS的研究生院开学之后,才有时间会开始研究下一章了,希望可以多从原版中获取一点经验.

堆和栈的区别和联系

一、简单的可以理解为:  heap:是由malloc之类函数分配的空间所在地。地址是由低向高增长的。  stack:是自动分配变量,以及函数调用的时候所使用的一些空间。地址是由高向低减少的。
二、堆和栈的理论知识 2.1申请方式 stack: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。 2.2 申请后系统的响应 栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 2.3申请大小的限制 栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 2.4申请效率的比较: 栈由系统自动分配,速度较快。但程序员是无法控制的。 堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度, 也最灵活 2.5堆和栈中的存储内容 栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。 堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。 2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa"; char *s2 = "bbbbbbbbbbbbbbbbb"; aaaaaaaaaaa是在运行时刻赋值的; 而bbbbbbbbbbb是在编译时就确定的; 但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 比如: #include  void main() { char a = 1; char c[] = "1234567890"; char *p ="1234567890"; a = c[1]; a = p[1]; return; } 对应的汇编代码 10: a = c[1]; 00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 0040106A 88 4D FC mov byte ptr [ebp-4],cl 11: a = p[1]; 0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 00401070 8A 42 01 mov al,byte ptr [edx+1] 00401073 88 45 FC mov byte ptr [ebp-4],al 第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指edx中,在根据edx读取字符,显然慢了。 ? 
2.7小结: 堆和栈的区别可以用如下的比喻来看出: 使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
堆和栈的区别主要分: 操作系统方面的堆和栈,如上面说的那些,不多说了。 还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。 虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因而已。

程序运行时三种内存分配策略