首页 > 代码库 > ( 树状数组) poj 2029
( 树状数组) poj 2029
Get Many Persimmon Trees
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3700 | Accepted: 2405 |
Description
Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as ‘Mishirazu Persimmon‘, were planted. Since persimmon was Hayashi‘s favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord.
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate‘s width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate‘s width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate‘s width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate‘s width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1.
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.
Input
The input consists of multiple data sets. Each data set is given in the following format.
N
W H
x1 y1
x2 y2
...
xN yN
S T
N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.
The end of the input is indicated by a line that solely contains a zero.
N
W H
x1 y1
x2 y2
...
xN yN
S T
N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H.
The end of the input is indicated by a line that solely contains a zero.
Output
For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.
Sample Input
1610 82 22 52 73 33 84 24 54 86 46 77 57 88 18 49 610 34 386 41 22 12 43 44 25 36 16 23 20
Sample Output
43
#include<iostream>#include<cstdio>#include<cstring>#include<string>#include<cmath>#include<cstdlib>#include<algorithm>using namespace std;#define N 1010int c[N][N],n,w,h;int lowbit(int x){ return x&(-x);}void update(int x,int y,int m){ for(int i=x;i<N;i=i+lowbit(i)) { for(int j=y;j<N;j=j+lowbit(j)) { c[i][j]+=m; } }}int sum(int x,int y){ int sum=0; for(int i=x;i>0;i=i-lowbit(i)) { for(int j=y;j>0;j=j-lowbit(j)) { sum+=c[i][j]; } } return sum;}int main(){ while(scanf("%d",&n)!=EOF) { if(n==0) break; int W,H; memset(c,0,sizeof(c)); scanf("%d%d",&W,&H); int x,y,w,h; for(int i=0;i<n;i++) { scanf("%d%d",&x,&y); update(x,y,1); } scanf("%d%d",&w,&h); int res=0; for(int i=w;i<=W;i++) { for(int j=h;j<=H;j++) { int ans=sum(i,j)-sum(i-w,j)-sum(i,j-h)+sum(i-w,j-h); if(res<ans) res=ans; } } printf("%d\n",res); } return 0;}
( 树状数组) poj 2029
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。