首页 > 代码库 > (中等) HDU 2295 , DLX+重复覆盖+二分。

(中等) HDU 2295 , DLX+重复覆盖+二分。

  Description

  N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a radius of R. Our goal is to minimize R while covering the entire city with no more than K radars.
 
  题目就是让我们找到一个最小的R,能够在M个站里面找到K个来覆盖N个城市。
 
  假设知道R的话,就可以通过DLX判断这个R成不成立,然后二分查找R就好。。。。。。
 
代码如下:
技术分享
#include<iostream>#include<cstring>using namespace std;const int MaxN=55;const int MaxM=55;const int MaxNode=MaxN*MaxM;int K;int N,M;struct DLX{    int D[MaxNode],U[MaxNode],L[MaxNode],R[MaxNode],col[MaxNode];    int H[MaxN],S[MaxM];    int n,m,size;    void init(int _n,int _m)    {        n=_n;        m=_m;        for(int i=0;i<=m;++i)        {            D[i]=U[i]=i;            L[i]=i-1;            R[i]=i+1;                        S[i]=0;        }        L[0]=m;        R[m]=0;                size=m;        for(int i=0;i<=n;++i)            H[i]=-1;    }    void Link(int r,int c)    {        col[++size]=c;        ++S[c];        U[size]=U[c];        D[size]=c;        D[U[c]]=size;        U[c]=size;        if(H[r]==-1)            H[r]=L[size]=R[size]=size;        else        {            L[size]=L[H[r]];            R[size]=H[r];            R[L[H[r]]]=size;            L[H[r]]=size;        }    }    void remove(int c)    {        for(int i=D[c];i!=c;i=D[i])        {            R[L[i]]=R[i];            L[R[i]]=L[i];        }    }    void resume(int c)    {        for(int i=U[c];i!=c;i=U[i])            R[L[i]]=L[R[i]]=i;    }    bool vis[MaxM];    int getH()    {        int ret=0;        for(int c=R[0];c!=0;c=R[c])            vis[c]=1;        for(int c=R[0];c!=0;c=R[c])            if(vis[c])            {                ++ret;                vis[c]=0;                for(int i=D[c];i!=c;i=D[i])                    for(int j=R[i];j!=i;j=R[j])                        vis[col[j]]=0;            }        return ret;    }    bool Dance(int d)    {        if(d+getH()>K)            return 0;        if(R[0]==0)        {            if(d<=K)                return 1;            return 0;        }        int c=R[0];        for(int i=R[0];i!=0;i=R[i])            if(S[i]<S[c])                c=i;        for(int i=D[c];i!=c;i=D[i])        {            remove(i);            for(int j=R[i];j!=i;j=R[j])                remove(j);            if(Dance(d+1))                return 1;            for(int j=L[i];j!=i;j=L[j])                resume(j);            resume(i);        }        return 0;    }};DLX dlx;int Rx[60],Ry[60],Cx[60],Cy[60];void solve(){    double L=0,R=1001.0,Mid;    while(R-L>0.0000001)    {        Mid=(L+R)/2;        dlx.init(M,N);        for(int i=1;i<=M;++i)            for(int j=1;j<=N;++j)                if(Mid*Mid>=(Rx[i]-Cx[j])*(Rx[i]-Cx[j])+(Ry[i]-Cy[j])*(Ry[i]-Cy[j]))                    dlx.Link(i,j);        if(dlx.Dance(0))            R=Mid;        else            L=Mid;    }    cout<<L<<endl;}int main(){    ios::sync_with_stdio(false);    cout.setf(ios::fixed);    cout.precision(6);    int T;    cin>>T;    while(T--)    {        cin>>N>>M>>K;        for(int i=1;i<=N;++i)            cin>>Cx[i]>>Cy[i];        for(int i=1;i<=M;++i)            cin>>Rx[i]>>Ry[i];        solve();    }    return 0;}
View Code

 

(中等) HDU 2295 , DLX+重复覆盖+二分。