首页 > 代码库 > centos7下安装部署tensorflow GPU 版本
centos7下安装部署tensorflow GPU 版本
系统环境:centos7
1. 安装 Python 2.7
# yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gcc gcc-c++ make
# download and extract Python 2.7
su hdfs
cd ~/Downloads
curl -O https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz
tar -xvf Python-2.7.12.tgz
# compile into local PYTHON_ROOT
# export PYTHON_ROOT=~/Python
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
pushd Python-2.7.12
./configure --prefix="${PYTHON_ROOT}" --enable-unicode=ucs4 make make install popd
# install pip
pushd "${PYTHON_ROOT}"
curl -O https://bootstrap.pypa.io/get-pip.py
bin/python get-pip.py
rm -rf get-pip.py
# 安装依赖库
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
${PYTHON_ROOT}/bin/pip install yarn-api-client
${PYTHON_ROOT}/bin/pip install uniout
${PYTHON_ROOT}/bin/pip install numpy
${PYTHON_ROOT}/bin/pip install pydoop
# 打包python_gpu
export PYTHON_ROOT=/var/lib/hadoop-hdfs/TensorFlowOnSpark-Work/Python_gpu
pushd "${PYTHON_ROOT}" zip -r Python_gpu.zip *
2. 在 Python 2.7 中安装tensorflow GPU
# 安装显卡驱动和cuda和cudda
参考文档
http://www.linuxidc.com/Linux/2016-11/137561.htm
# 安装nvidia-modprobe
yum -y install nvidia-modprobe
#查看gpu信息
export PATH="$PATH:/usr/local/cuda-8.0/bin"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64"
nvidia-smi
能看到这个信息说明gpu已经安装配置成功
# 安装tensorflow
su hdfs
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
${PYTHON_ROOT}/bin/pip install tensorflow-gpu
# 安装keras
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
${PYTHON_ROOT}/bin/pip install keras
# 验证一 tensorflow
su hdfs
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
export PATH="$PATH:/usr/local/cuda-8.0/bin"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64"
${PYTHON_ROOT}/bin/python
import tensorflow as tf
hello = tf.constant(‘Hello, TensorFlow!‘)
sess = tf.Session()
print (sess.run(hello))
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name=‘a‘)
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name=‘b‘)
c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))
# 验证二 tensorflow
su hdfs
cd /var/lib/hadoop-hdfs/Downloads/tensorflow/tensorflow/examples/tutorials/mnist
export PYTHON_ROOT=~/TensorFlowOnSpark-Work/Python_gpu
export PATH="$PATH:/usr/local/cuda-8.0/bin"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64"
${PYTHON_ROOT}/bin/python mnist_deep.py
已经可以看到 gpu的进程和负载了
CUDA之nvidia-smi命令详解
http://blog.csdn.net/bruce_0712/article/details/63683787
centos7下安装部署tensorflow GPU 版本