首页 > 代码库 > [kaggle入门] Titanic Machine Learning from Disaster
[kaggle入门] Titanic Machine Learning from Disaster
<style></style> <style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
<style></style>
Titanic Data Science Solutions¶
https://www.kaggle.com/startupsci/titanic-data-science-solutions
数据挖掘竞赛七个步骤:¶
- Question or problem definition.
- Acquire training and testing data.
- Wrangle, prepare, cleanse the data.
- Analyze, identify patterns, and explore the data.
- Model, predict and solve the problem.
- Visualize, report, and present the problem solving steps and final solution.
- Supply or submit the results.
数据挖掘竞赛的七种目标:¶
- Classifying: classify or categorize our samples and may also want to understand the implications or correlation of different classes with our solution goal.
- Correlating: Correlating certain features may help in creating, completing, or correcting features.
- Converting: For instance converting text categorical values to numeric values.
- Completing: Estimate any missing values within a feature.
- Correcting: Detect any outliers among our samples or features and may discard a feature if it is not contribting to the analysis or may significantly skew the results.
- Creating: Create new features based on an existing feature or a set of features.(correlation, conversion, completeness..)
- Charting: Select the right visualization plots and charts
Question or problem definition¶
https://www.kaggle.com/c/titanic
- The question or problem definition for Titanic Survival competition Knowing from a training set of samples listing passengers who survived or did not survive the Titanic disaster, can our model determine based on a given test dataset not containing the survival information, if these passengers in the test dataset survived or not.
- Some early understanding about the domain of our problem. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. Translated 32% survival rate. One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.
In [1]:
# data analysis and wrangling 数据分析和清洗工具import pandas as pdimport numpy as npimport random as rnd# visualization 数据可视化工具import seaborn as snsimport matplotlib.pyplot as plt%matplotlib inline# machine learning 机器学习模型from sklearn.linear_model import LogisticRegression # 逻辑回归from sklearn.svm import SVC, LinearSVC # 支持向量机from sklearn.ensemble import RandomForestClassifier # 随机森林from sklearn.neighbors import KNeighborsClassifier # K近邻from sklearn.naive_bayes import GaussianNB # 贝叶斯算法from sklearn.linear_model import Perceptron # 感知机from sklearn.linear_model import SGDClassifier # 随机梯度下降分类器from sklearn.tree import DecisionTreeClassifier # 决策树
Acquire training and testing data¶
In [2]:
train_df = pd.read_csv(‘data/train.csv‘) # 用pandas的read_csv方法读出DataFrame数据test_df = pd.read_csv(‘data/test.csv‘)combine = [train_df, test_df] # combine为一个数据集,方便对训练集和测试集做相同的数据清洗操作
Analyze by describing data¶
https://www.kaggle.com/c/titanic/data
In [3]:
print(train_df.columns.values) # 导出列名:features的名字
[‘PassengerId‘ ‘Survived‘ ‘Pclass‘ ‘Name‘ ‘Sex‘ ‘Age‘ ‘SibSp‘ ‘Parch‘ ‘Ticket‘ ‘Fare‘ ‘Cabin‘ ‘Embarked‘]
In [4]:
# preview the datatrain_df.head() # 默认前5行
Out[4]:
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | A/5 21171 | 7.2500 | NaN | S |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | STON/O2. 3101282 | 7.9250 | NaN | S |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 113803 | 53.1000 | C123 | S |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 373450 | 8.0500 | NaN | S |
In [5]:
train_df.tail() # 默认后5行
Out[5]:
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Ticket | Fare | Cabin | Embarked | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
886 | 887 | 0 | 2 | Montvila, Rev. Juozas | male | 27.0 | 0 | 0 | 211536 | 13.00 | NaN | S |
887 | 888 | 1 | 1 | Graham, Miss. Margaret Edith | female | 19.0 | 0 | 0 | 112053 | 30.00 | B42 | S |
888 | 889 | 0 | 3 | Johnston, Miss. Catherine Helen "Carrie" | female | NaN | 1 | 2 | W./C. 6607 | 23.45 | NaN | S |
889 | 890 | 1 | 1 | Behr, Mr. Karl Howell | male | 26.0 | 0 | 0 | 111369 | 30.00 | C148 | C |
890 | 891 | 0 | 3 | Dooley, Mr. Patrick | male | 32.0 | 0 | 0 | 370376 | 7.75 | NaN | Q |
In [6]:
train_df.info()print(‘_‘*40)test_df.info()
<class ‘pandas.core.frame.DataFrame‘>RangeIndex: 891 entries, 0 to 890Data columns (total 12 columns):PassengerId 891 non-null int64Survived 891 non-null int64Pclass 891 non-null int64Name 891 non-null objectSex 891 non-null objectAge 714 non-null float64SibSp 891 non-null int64Parch 891 non-null int64Ticket 891 non-null objectFare 891 non-null float64Cabin 204 non-null objectEmbarked 889 non-null objectdtypes: float64(2), int64(5), object(5)memory usage: 83.6+ KB________________________________________<class ‘pandas.core.frame.DataFrame‘>RangeIndex: 418 entries, 0 to 417Data columns (total 11 columns):PassengerId 418 non-null int64Pclass 418 non-null int64Name 418 non-null objectSex 418 non-null objectAge 332 non-null float64SibSp 418 non-null int64Parch 418 non-null int64Ticket 418 non-null objectFare 417 non-null float64Cabin 91 non-null objectEmbarked 418 non-null objectdtypes: float64(2), int64(4), object(5)memory usage: 36.0+ KB
- Which features are categorical?
Categorical: Survived, Sex, and Embarked.
Ordinal: Pclass. - Which features are numerical?
Continous: Age, Fare.
Discrete: SibSp, Parch. - Which features are mixed data types?
Ticket is a mix of numeric and alphanumeric data types.
Cabin is alphanumeric. - Which features may contain errors or typos?
Name feature may contain errors or typos as there are several ways used to describe a name including titles, round brackets, and quotes used for alternative or short names. - Which features contain blank, null or empty values?
Cabin > Age > Embarked features contain a number of null values in that order for the training dataset.
Cabin > Age are incomplete in case of test dataset. - What are the data types for various features?
Seven features are integer or floats. Six in case of test dataset.
Five features are strings (object).
In [7]:
train_df.describe() # 数据的描述(总数、均值、标准差、最大、最小、25%、50%、75%)# Review survived rate using `percentiles=[.61, .62]` knowing our problem description mentions 38% survival rate.# Review Parch distribution using `percentiles=[.75, .8]`# SibSp distribution `[.68, .69]`# Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]`
Out[7]:
PassengerId | Survived | Pclass | Age | SibSp | Parch | Fare | |
---|---|---|---|---|---|---|---|
count | 891.000000 | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
mean | 446.000000 | 0.383838 | 2.308642 | 29.699118 | 0.523008 | 0.381594 | 32.204208 |
std | 257.353842 | 0.486592 | 0.836071 | 14.526497 | 1.102743 | 0.806057 | 49.693429 |
min | 1.000000 | 0.000000 | 1.000000 | 0.420000 | 0.000000 | 0.000000 | 0.000000 |
25% | 223.500000 | 0.000000 | 2.000000 | 20.125000 | 0.000000 | 0.000000 | 7.910400 |
50% | 446.000000 | 0.000000 | 3.000000 | 28.000000 | 0.000000 | 0.000000 | 14.454200 |
75% | 668.500000 | 1.000000 | 3.000000 | 38.000000 | 1.000000 | 0.000000 | 31.000000 |
max | 891.000000 | 1.000000 | 3.000000 | 80.000000 | 8.000000 | 6.000000 | 512.329200 |
In [8]:
train_df.describe(include=[‘O‘]) # 找出特征中几个出现的不同值和频率最高
Out[8]:
Name | Sex | Ticket | Cabin | Embarked | |
---|---|---|---|---|---|
count | 891 | 891 | 891 | 204 | 889 |
unique | 891 | 2 | 681 | 147 | 3 |
top | Caldwell, Mrs. Albert Francis (Sylvia Mae Harb... | male | 347082 | B96 B98 | S |
freq | 1 | 577 | 7 | 4 | 644 |
- What is the distribution of numerical feature values across the samples?
Total samples are 891 or 40% of the actual number of passengers on board the Titanic (2,224).
Survived is a categorical feature with 0 or 1 values.
Around 38% samples survived representative of the actual survival rate at 32%.
Most passengers (> 75%) did not travel with parents or children.
Nearly 30% of the passengers had siblings and/or spouse aboard.
Fares varied significantly with few passengers (\<1%) paying as high as 512.
Few elderly passengers (\<1%) within age range 65-80. - What is the distribution of categorical features?
Names are unique across the dataset (count=unique=891).
Sex variable as two possible values with 65% male (top=male, freq=577/count=891).
Cabin values have several dupicates across samples. Alternatively several passengers shared a cabin.
Embarked takes three possible values. S port used by most passengers (top=S).
Ticket feature has high ratio (22%) of duplicate values (unique=681).
Assumtions based on data analysis¶
Correlating
Completing
Correcting
Creating
Classifying
In [9]:
# 通过groupby找出该特征与目标之间的关联train_df[[‘Pclass‘, ‘Survived‘]].groupby([‘Pclass‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[9]:
Pclass | Survived | |
---|---|---|
0 | 1 | 0.629630 |
1 | 2 | 0.472826 |
2 | 3 | 0.242363 |
In [10]:
train_df[["Sex", "Survived"]].groupby([‘Sex‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[10]:
Sex | Survived | |
---|---|---|
0 | female | 0.742038 |
1 | male | 0.188908 |
In [11]:
train_df[["SibSp", "Survived"]].groupby([‘SibSp‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[11]:
SibSp | Survived | |
---|---|---|
1 | 1 | 0.535885 |
2 | 2 | 0.464286 |
0 | 0 | 0.345395 |
3 | 3 | 0.250000 |
4 | 4 | 0.166667 |
5 | 5 | 0.000000 |
6 | 8 | 0.000000 |
In [12]:
train_df[["Parch", "Survived"]].groupby([‘Parch‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[12]:
Parch | Survived | |
---|---|---|
3 | 3 | 0.600000 |
1 | 1 | 0.550847 |
2 | 2 | 0.500000 |
0 | 0 | 0.343658 |
5 | 5 | 0.200000 |
4 | 4 | 0.000000 |
6 | 6 | 0.000000 |
Analyze by visualizing data¶
In [13]:
g = sns.FacetGrid(train_df, col=‘Survived‘)g.map(plt.hist, ‘Age‘, bins=20)
Out[13]:
<seaborn.axisgrid.FacetGrid at 0x2a742a46828>
In [14]:
# grid = sns.FacetGrid(train_df, col=‘Pclass‘, hue=‘Survived‘)grid = sns.FacetGrid(train_df, col=‘Survived‘, row=‘Pclass‘, size=2.2, aspect=1.6)grid.map(plt.hist, ‘Age‘, alpha=.5, bins=20)grid.add_legend();
In [15]:
# grid = sns.FacetGrid(train_df, col=‘Embarked‘)grid = sns.FacetGrid(train_df, row=‘Embarked‘, size=2.2, aspect=1.6)grid.map(sns.pointplot, ‘Pclass‘, ‘Survived‘, ‘Sex‘, palette=‘deep‘)grid.add_legend()
Out[15]:
<seaborn.axisgrid.FacetGrid at 0x2a7435e7198>
In [16]:
# grid = sns.FacetGrid(train_df, col=‘Embarked‘, hue=‘Survived‘, palette={0: ‘k‘, 1: ‘w‘})grid = sns.FacetGrid(train_df, row=‘Embarked‘, col=‘Survived‘, size=2.2, aspect=1.6)grid.map(sns.barplot, ‘Sex‘, ‘Fare‘, alpha=.5, ci=None)grid.add_legend()
Out[16]:
<seaborn.axisgrid.FacetGrid at 0x2a7435e7978>
Wrangle, prepare, cleanse the data¶
Correcting by dropping features
drop the Cabin (correcting #2) and Ticket (correcting #1) features
In [17]:
print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)train_df = train_df.drop([‘Ticket‘, ‘Cabin‘], axis=1)test_df = test_df.drop([‘Ticket‘, ‘Cabin‘], axis=1)combine = [train_df, test_df]print("After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
Before (891, 12) (418, 11) (891, 12) (418, 11)After (891, 10) (418, 9) (891, 10) (418, 9)
Creating new feature extracting from existing
In [18]:
for dataset in combine: dataset[‘Title‘] = dataset.Name.str.extract(‘ ([A-Za-z]+)\.‘, expand=False)pd.crosstab(train_df[‘Title‘], train_df[‘Sex‘])
Out[18]:
Sex | female | male |
---|---|---|
Title | ||
Capt | 0 | 1 |
Col | 0 | 2 |
Countess | 1 | 0 |
Don | 0 | 1 |
Dr | 1 | 6 |
Jonkheer | 0 | 1 |
Lady | 1 | 0 |
Major | 0 | 2 |
Master | 0 | 40 |
Miss | 182 | 0 |
Mlle | 2 | 0 |
Mme | 1 | 0 |
Mr | 0 | 517 |
Mrs | 125 | 0 |
Ms | 1 | 0 |
Rev | 0 | 6 |
Sir | 0 | 1 |
In [19]:
for dataset in combine: dataset[‘Title‘] = dataset[‘Title‘].replace([‘Lady‘, ‘Countess‘,‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Rare‘) dataset[‘Title‘] = dataset[‘Title‘].replace(‘Mlle‘, ‘Miss‘) dataset[‘Title‘] = dataset[‘Title‘].replace(‘Ms‘, ‘Miss‘) dataset[‘Title‘] = dataset[‘Title‘].replace(‘Mme‘, ‘Mrs‘) train_df[[‘Title‘, ‘Survived‘]].groupby([‘Title‘], as_index=False).mean()
Out[19]:
Title | Survived | |
---|---|---|
0 | Master | 0.575000 |
1 | Miss | 0.702703 |
2 | Mr | 0.156673 |
3 | Mrs | 0.793651 |
4 | Rare | 0.347826 |
In [20]:
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}for dataset in combine: dataset[‘Title‘] = dataset[‘Title‘].map(title_mapping) dataset[‘Title‘] = dataset[‘Title‘].fillna(0)train_df.head()
Out[20]:
PassengerId | Survived | Pclass | Name | Sex | Age | SibSp | Parch | Fare | Embarked | Title | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 3 | Braund, Mr. Owen Harris | male | 22.0 | 1 | 0 | 7.2500 | S | 1 |
1 | 2 | 1 | 1 | Cumings, Mrs. John Bradley (Florence Briggs Th... | female | 38.0 | 1 | 0 | 71.2833 | C | 3 |
2 | 3 | 1 | 3 | Heikkinen, Miss. Laina | female | 26.0 | 0 | 0 | 7.9250 | S | 2 |
3 | 4 | 1 | 1 | Futrelle, Mrs. Jacques Heath (Lily May Peel) | female | 35.0 | 1 | 0 | 53.1000 | S | 3 |
4 | 5 | 0 | 3 | Allen, Mr. William Henry | male | 35.0 | 0 | 0 | 8.0500 | S | 1 |
In [21]:
train_df = train_df.drop([‘Name‘, ‘PassengerId‘], axis=1)test_df = test_df.drop([‘Name‘], axis=1)combine = [train_df, test_df]train_df.shape, test_df.shape
Out[21]:
((891, 9), (418, 9))
In [22]:
for dataset in combine: dataset[‘Sex‘] = dataset[‘Sex‘].map( {‘female‘: 1, ‘male‘: 0} ).astype(int)train_df.head()
Out[22]:
Survived | Pclass | Sex | Age | SibSp | Parch | Fare | Embarked | Title | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 22.0 | 1 | 0 | 7.2500 | S | 1 |
1 | 1 | 1 | 1 | 38.0 | 1 | 0 | 71.2833 | C | 3 |
2 | 1 | 3 | 1 | 26.0 | 0 | 0 | 7.9250 | S | 2 |
3 | 1 | 1 | 1 | 35.0 | 1 | 0 | 53.1000 | S | 3 |
4 | 0 | 3 | 0 | 35.0 | 0 | 0 | 8.0500 | S | 1 |
In [23]:
# grid = sns.FacetGrid(train_df, col=‘Pclass‘, hue=‘Gender‘)grid = sns.FacetGrid(train_df, row=‘Pclass‘, col=‘Sex‘, size=2.2, aspect=1.6)grid.map(plt.hist, ‘Age‘, alpha=.5, bins=20)grid.add_legend()
Out[23]:
<seaborn.axisgrid.FacetGrid at 0x2a74330acf8>
In [24]:
guess_ages = np.zeros((2,3))guess_ages
Out[24]:
array([[ 0., 0., 0.], [ 0., 0., 0.]])
In [25]:
for dataset in combine: for i in range(0, 2): for j in range(0, 3): guess_df = dataset[(dataset[‘Sex‘] == i) & (dataset[‘Pclass‘] == j+1)][‘Age‘].dropna() # age_mean = guess_df.mean() # age_std = guess_df.std() # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std) age_guess = guess_df.median() # Convert random age float to nearest .5 age guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5 for i in range(0, 2): for j in range(0, 3): dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1), ‘Age‘] = guess_ages[i,j] dataset[‘Age‘] = dataset[‘Age‘].astype(int)train_df.head()
Out[25]:
Survived | Pclass | Sex | Age | SibSp | Parch | Fare | Embarked | Title | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 22 | 1 | 0 | 7.2500 | S | 1 |
1 | 1 | 1 | 1 | 38 | 1 | 0 | 71.2833 | C | 3 |
2 | 1 | 3 | 1 | 26 | 0 | 0 | 7.9250 | S | 2 |
3 | 1 | 1 | 1 | 35 | 1 | 0 | 53.1000 | S | 3 |
4 | 0 | 3 | 0 | 35 | 0 | 0 | 8.0500 | S | 1 |
In [26]:
train_df[‘AgeBand‘] = pd.cut(train_df[‘Age‘], 5)train_df[[‘AgeBand‘, ‘Survived‘]].groupby([‘AgeBand‘], as_index=False).mean().sort_values(by=‘AgeBand‘, ascending=True)
Out[26]:
AgeBand | Survived | |
---|---|---|
0 | (-0.08, 16.0] | 0.550000 |
1 | (16.0, 32.0] | 0.337374 |
2 | (32.0, 48.0] | 0.412037 |
3 | (48.0, 64.0] | 0.434783 |
4 | (64.0, 80.0] | 0.090909 |
In [27]:
for dataset in combine: dataset.loc[ dataset[‘Age‘] <= 16, ‘Age‘] = 0 dataset.loc[(dataset[‘Age‘] > 16) & (dataset[‘Age‘] <= 32), ‘Age‘] = 1 dataset.loc[(dataset[‘Age‘] > 32) & (dataset[‘Age‘] <= 48), ‘Age‘] = 2 dataset.loc[(dataset[‘Age‘] > 48) & (dataset[‘Age‘] <= 64), ‘Age‘] = 3 dataset.loc[ dataset[‘Age‘] > 64, ‘Age‘]train_df.head()
Out[27]:
Survived | Pclass | Sex | Age | SibSp | Parch | Fare | Embarked | Title | AgeBand | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 1 | 1 | 0 | 7.2500 | S | 1 | (16.0, 32.0] |
1 | 1 | 1 | 1 | 2 | 1 | 0 | 71.2833 | C | 3 | (32.0, 48.0] |
2 | 1 | 3 | 1 | 1 | 0 | 0 | 7.9250 | S | 2 | (16.0, 32.0] |
3 | 1 | 1 | 1 | 2 | 1 | 0 | 53.1000 | S | 3 | (32.0, 48.0] |
4 | 0 | 3 | 0 | 2 | 0 | 0 | 8.0500 | S | 1 | (32.0, 48.0] |
In [28]:
train_df = train_df.drop([‘AgeBand‘], axis=1)combine = [train_df, test_df]train_df.head()
Out[28]:
Survived | Pclass | Sex | Age | SibSp | Parch | Fare | Embarked | Title | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 1 | 1 | 0 | 7.2500 | S | 1 |
1 | 1 | 1 | 1 | 2 | 1 | 0 | 71.2833 | C | 3 |
2 | 1 | 3 | 1 | 1 | 0 | 0 | 7.9250 | S | 2 |
3 | 1 | 1 | 1 | 2 | 1 | 0 | 53.1000 | S | 3 |
4 | 0 | 3 | 0 | 2 | 0 | 0 | 8.0500 | S | 1 |
In [29]:
for dataset in combine: dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1train_df[[‘FamilySize‘, ‘Survived‘]].groupby([‘FamilySize‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[29]:
FamilySize | Survived | |
---|---|---|
3 | 4 | 0.724138 |
2 | 3 | 0.578431 |
1 | 2 | 0.552795 |
6 | 7 | 0.333333 |
0 | 1 | 0.303538 |
4 | 5 | 0.200000 |
5 | 6 | 0.136364 |
7 | 8 | 0.000000 |
8 | 11 | 0.000000 |
In [30]:
for dataset in combine: dataset[‘IsAlone‘] = 0 dataset.loc[dataset[‘FamilySize‘] == 1, ‘IsAlone‘] = 1train_df[[‘IsAlone‘, ‘Survived‘]].groupby([‘IsAlone‘], as_index=False).mean()
Out[30]:
IsAlone | Survived | |
---|---|---|
0 | 0 | 0.505650 |
1 | 1 | 0.303538 |
In [31]:
train_df = train_df.drop([‘Parch‘, ‘SibSp‘, ‘FamilySize‘], axis=1)test_df = test_df.drop([‘Parch‘, ‘SibSp‘, ‘FamilySize‘], axis=1)combine = [train_df, test_df]train_df.head()
Out[31]:
Survived | Pclass | Sex | Age | Fare | Embarked | Title | IsAlone | |
---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 1 | 7.2500 | S | 1 | 0 |
1 | 1 | 1 | 1 | 2 | 71.2833 | C | 3 | 0 |
2 | 1 | 3 | 1 | 1 | 7.9250 | S | 2 | 1 |
3 | 1 | 1 | 1 | 2 | 53.1000 | S | 3 | 0 |
4 | 0 | 3 | 0 | 2 | 8.0500 | S | 1 | 1 |
In [32]:
for dataset in combine: dataset[‘Age*Class‘] = dataset.Age * dataset.Pclasstrain_df.loc[:, [‘Age*Class‘, ‘Age‘, ‘Pclass‘]].head(10)
Out[32]:
Age*Class | Age | Pclass | |
---|---|---|---|
0 | 3 | 1 | 3 |
1 | 2 | 2 | 1 |
2 | 3 | 1 | 3 |
3 | 2 | 2 | 1 |
4 | 6 | 2 | 3 |
5 | 3 | 1 | 3 |
6 | 3 | 3 | 1 |
7 | 0 | 0 | 3 |
8 | 3 | 1 | 3 |
9 | 0 | 0 | 2 |
In [33]:
freq_port = train_df.Embarked.dropna().mode()[0]freq_port
Out[33]:
‘S‘
In [34]:
for dataset in combine: dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(freq_port) train_df[[‘Embarked‘, ‘Survived‘]].groupby([‘Embarked‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
Out[34]:
Embarked | Survived | |
---|---|---|
0 | C | 0.553571 |
1 | Q | 0.389610 |
2 | S | 0.339009 |
In [35]:
for dataset in combine: dataset[‘Embarked‘] = dataset[‘Embarked‘].map( {‘S‘: 0, ‘C‘: 1, ‘Q‘: 2} ).astype(int)train_df.head()
Out[35]:
Survived | Pclass | Sex | Age | Fare | Embarked | Title | IsAlone | Age*Class | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 1 | 7.2500 | 0 | 1 | 0 | 3 |
1 | 1 | 1 | 1 | 2 | 71.2833 | 1 | 3 | 0 | 2 |
2 | 1 | 3 | 1 | 1 | 7.9250 | 0 | 2 | 1 | 3 |
3 | 1 | 1 | 1 | 2 | 53.1000 | 0 | 3 | 0 | 2 |
4 | 0 | 3 | 0 | 2 | 8.0500 | 0 | 1 | 1 | 6 |
In [36]:
test_df[‘Fare‘].fillna(test_df[‘Fare‘].dropna().median(), inplace=True)test_df.head()
Out[36]:
PassengerId | Pclass | Sex | Age | Fare | Embarked | Title | IsAlone | Age*Class | |
---|---|---|---|---|---|---|---|---|---|
0 | 892 | 3 | 0 | 2 | 7.8292 | 2 | 1 | 1 | 6 |
1 | 893 | 3 | 1 | 2 | 7.0000 | 0 | 3 | 0 | 6 |
2 | 894 | 2 | 0 | 3 | 9.6875 | 2 | 1 | 1 | 6 |
3 | 895 | 3 | 0 | 1 | 8.6625 | 0 | 1 | 1 | 3 |
4 | 896 | 3 | 1 | 1 | 12.2875 | 0 | 3 | 0 | 3 |
In [37]:
train_df[‘FareBand‘] = pd.qcut(train_df[‘Fare‘], 4)train_df[[‘FareBand‘, ‘Survived‘]].groupby([‘FareBand‘], as_index=False).mean().sort_values(by=‘FareBand‘, ascending=True)
Out[37]:
FareBand | Survived | |
---|---|---|
0 | (-0.001, 7.91] | 0.197309 |
1 | (7.91, 14.454] | 0.303571 |
2 | (14.454, 31.0] | 0.454955 |
3 | (31.0, 512.329] | 0.581081 |
In [38]:
for dataset in combine: dataset.loc[ dataset[‘Fare‘] <= 7.91, ‘Fare‘] = 0 dataset.loc[(dataset[‘Fare‘] > 7.91) & (dataset[‘Fare‘] <= 14.454), ‘Fare‘] = 1 dataset.loc[(dataset[‘Fare‘] > 14.454) & (dataset[‘Fare‘] <= 31), ‘Fare‘] = 2 dataset.loc[ dataset[‘Fare‘] > 31, ‘Fare‘] = 3 dataset[‘Fare‘] = dataset[‘Fare‘].astype(int)train_df = train_df.drop([‘FareBand‘], axis=1)combine = [train_df, test_df] train_df.head(10)
Out[38]:
Survived | Pclass | Sex | Age | Fare | Embarked | Title | IsAlone | Age*Class | |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 3 | 0 | 1 | 0 | 0 | 1 | 0 | 3 |
1 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 0 | 2 |
2 | 1 | 3 | 1 | 1 | 1 | 0 | 2 | 1 | 3 |
3 | 1 | 1 | 1 | 2 | 3 | 0 | 3 | 0 | 2 |
4 | 0 | 3 | 0 | 2 | 1 | 0 | 1 | 1 | 6 |
5 | 0 | 3 | 0 | 1 | 1 | 2 | 1 | 1 | 3 |
6 | 0 | 1 | 0 | 3 | 3 | 0 | 1 | 1 | 3 |
7 | 0 | 3 | 0 | 0 | 2 | 0 | 4 | 0 | 0 |
8 | 1 | 3 | 1 | 1 | 1 | 0 | 3 | 0 | 3 |
9 | 1 | 2 | 1 | 0 | 2 | 1 | 3 | 0 | 0 |
In [39]:
test_df.head(10)
Out[39]:
PassengerId | Pclass | Sex | Age | Fare | Embarked | Title | IsAlone | Age*Class | |
---|---|---|---|---|---|---|---|---|---|
0 | 892 | 3 | 0 | 2 | 0 | 2 | 1 | 1 | 6 |
1 | 893 | 3 | 1 | 2 | 0 | 0 | 3 | 0 | 6 |
2 | 894 | 2 | 0 | 3 | 1 | 2 | 1 | 1 | 6 |
3 | 895 | 3 | 0 | 1 | 1 | 0 | 1 | 1 | 3 |
4 | 896 | 3 | 1 | 1 | 1 | 0 | 3 | 0 | 3 |
5 | 897 | 3 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
6 | 898 | 3 | 1 | 1 | 0 | 2 | 2 | 1 | 3 |
7 | 899 | 2 | 0 | 1 | 2 | 0 | 1 | 0 | 2 |
8 | 900 | 3 | 1 | 1 | 0 | 1 | 3 | 1 | 3 |
9 | 901 | 3 | 0 | 1 | 2 | 0 | 1 | 0 | 3 |
In [40]:
X_train = train_df.drop("Survived", axis=1)Y_train = train_df["Survived"]X_test = test_df.drop("PassengerId", axis=1).copy()X_train.shape, Y_train.shape, X_test.shape
Out[40]:
((891, 8), (891,), (418, 8))
In [41]:
# Logistic Regressionlogreg = LogisticRegression()logreg.fit(X_train, Y_train)Y_pred = logreg.predict(X_test)acc_log = round(logreg.score(X_train, Y_train) * 100, 2)acc_log
Out[41]:
80.359999999999999
In [42]:
coeff_df = pd.DataFrame(train_df.columns.delete(0))coeff_df.columns = [‘Feature‘]coeff_df["Correlation"] = pd.Series(logreg.coef_[0])coeff_df.sort_values(by=‘Correlation‘, ascending=False)
Out[42]:
Feature | Correlation | |
---|---|---|
1 | Sex | 2.201527 |
5 | Title | 0.398234 |
2 | Age | 0.287164 |
4 | Embarked | 0.261762 |
6 | IsAlone | 0.129140 |
3 | Fare | -0.085150 |
7 | Age*Class | -0.311199 |
0 | Pclass | -0.749006 |
In [43]:
# Support Vector Machinessvc = SVC()svc.fit(X_train, Y_train)Y_pred = svc.predict(X_test)acc_svc = round(svc.score(X_train, Y_train) * 100, 2)acc_svc
Out[43]:
83.840000000000003
In [44]:
knn = KNeighborsClassifier(n_neighbors = 3)knn.fit(X_train, Y_train)Y_pred = knn.predict(X_test)acc_knn = round(knn.score(X_train, Y_train) * 100, 2)acc_knn
Out[44]:
84.739999999999995
In [45]:
# Gaussian Naive Bayesgaussian = GaussianNB()gaussian.fit(X_train, Y_train)Y_pred = gaussian.predict(X_test)acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)acc_gaussian
Out[45]:
72.280000000000001
In [46]:
# Perceptronperceptron = Perceptron()perceptron.fit(X_train, Y_train)Y_pred = perceptron.predict(X_test)acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)acc_perceptron
Out[46]:
78.0
In [47]:
# Linear SVClinear_svc = LinearSVC()linear_svc.fit(X_train, Y_train)Y_pred = linear_svc.predict(X_test)acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)acc_linear_svc
Out[47]:
79.120000000000005
In [48]:
# Stochastic Gradient Descentsgd = SGDClassifier()sgd.fit(X_train, Y_train)Y_pred = sgd.predict(X_test)acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)acc_sgd
Out[48]:
76.879999999999995
In [49]:
# Decision Treedecision_tree = DecisionTreeClassifier()decision_tree.fit(X_train, Y_train)Y_pred = decision_tree.predict(X_test)acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)acc_decision_tree
Out[49]:
86.760000000000005
In [50]:
# Random Forestrandom_forest = RandomForestClassifier(n_estimators=100)random_forest.fit(X_train, Y_train)Y_pred = random_forest.predict(X_test)random_forest.score(X_train, Y_train)acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)acc_random_forest
Out[50]:
86.760000000000005
In [51]:
models = pd.DataFrame({ ‘Model‘: [‘Support Vector Machines‘, ‘KNN‘, ‘Logistic Regression‘, ‘Random Forest‘, ‘Naive Bayes‘, ‘Perceptron‘, ‘Stochastic Gradient Decent‘, ‘Linear SVC‘, ‘Decision Tree‘], ‘Score‘: [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_sgd, acc_linear_svc, acc_decision_tree]})models.sort_values(by=‘Score‘, ascending=False)
Out[51]:
Model | Score | |
---|---|---|
3 | Random Forest | 86.76 |
8 | Decision Tree | 86.76 |
1 | KNN | 84.74 |
0 | Support Vector Machines | 83.84 |
2 | Logistic Regression | 80.36 |
7 | Linear SVC | 79.12 |
5 | Perceptron | 78.00 |
6 | Stochastic Gradient Decent | 76.88 |
4 | Naive Bayes | 72.28 |
In [52]:
submission = pd.DataFrame({ "PassengerId": test_df["PassengerId"], "Survived": Y_pred })# submission.to_csv(‘../output/submission.csv‘, index=False)
In [ ]:
[kaggle入门] Titanic Machine Learning from Disaster
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。